МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Прогнозирование, предупреждение и ликвидация чрезвычайных ситуаций на Туймазинском газоперерабатывающем заводе

    В большинстве ГФУ охлаждающем агентом является оборотная вода, температура которой в средней полосе России поддерживается 16-20°С зимой и 24-30°С - летом. Исходя из этого, температуру конденсации верхнего продукта принимают равной 40°С, а при использовании аппаратов воздушного охлаждения температура в емкости орошения должна быть на 10-12°С выше максимально возможной температуры окружающего воздуха.

    Давление в емкости орошения равно сумме парциальных давлений насыщенных паров при данной температуре [1].

    Давление в ректификационной колонне принимают обычно на 0,2-0,3 МПа выше, чем давление в емкости орошения. Этого достаточно для преодоления гидравлического сопротивления при прохождении паров через тарелки и конденсаторы. При выделении из жидкой смеси легких углеводородов, таких, как метан и этан, оптимальное давление может изменяться в широких пределах, так как это связано не только с составом сырья, но и с технологической схемой установки, определяющей возможность использования дешевых хладоагентов.

    При заданных составах верхнего продукта (дистиллята) и жидкого остатка, отводимого с низа колонн, температуру вверху и внизу колонны определяют методом последовательного приближения. Температуру верха колонны определяют как температуру конца кипения верхнего продукта. Температура низа колонны должна отвечать температуре начала кипения (однократного испарения) остатка при давлении в колонне [1].

    Температура сырья, подаваемого в колонну, должна соответствовать расчетной температуре тарелки питания. Оптимальная температура питания определяется в основном затратами на хладоагент и теплоноситель. При использовании дорогих хладоагентов (пропан, аммиак) при отделении метана и этана невыгодно перегревать сырье, т.о. лучше направить его в колонну при температуре кипения или даже в переохлажденном состоянии. В то же время при использовании дешевых хладоагентов (вода и воздух) и дорогих теплоносителей становится выгодным подавать сырье в парожидкостном состоянии. В колоннах ГФУ предусматривается от одного до четырех вводов сырья на разные тарелки питания. Подачу сырья на ту пли иную тарелку питания подбирают экспериментально, и она зависит от состава сырья. Чем больше содержится в сырье тяжелых углеводородов, на нижнюю тарелку питания оно подается, и, наоборот, сырье, с большим содержанием легких углеводородом подается на верхнюю тарелку питания. Между двумя соседними вводами сырья обычно располагается от трех до шести тарелок [1].


    1.5 Технологическая схема газофракционирующей

    установки ГФУ-1

    ГФУ-1 предназначена для получения стабильного бензина и сжиженных газов, или стабильного бензина и фракций индивидуальных углеводородов из широкой фракции углеводородов [2].

    Сырье с товарно-сырьевого парка через систему теплообменников Т-2, Т-3, Т-4 с температурой 55-70 ºС и давлением 1,6-1,7 МПа поступает на одну из питательных тарелок колонн К-4, К-5, К-6.

    Верхний продукт колонн К-4, К-5, К-6 пропан-бутановые смеси отводятся через конденсаторы - холодильники Х-10, Х-12, Х-15а, Х-13, Х-13а в емкость орошения Е-11, Е-12, откуда часть продукта насосами Н-5(а, б), Н-6, Н-8(а, б) подается на орошение колонн К-4, К-5, К-6, а избыток откачивается на склад. Хвостовые газы из емкостей Е-11 и Е-12 через Е-12 через емкость Е-17 направляются в пункт редуцирования.

    Нижние продукты (бутан-бензиновая смесь) колонн К-4, К-5, К-6 из испарителей И-1, И-2, И-3 через теплообменники Т-2, Т-3, Т-4, Т-5 с температурой 50-70 ºС и давлением 0,6-0,7 МПа поступают в колонну К-7.

    Колонны К-4, К-5, ГФУ-1 обвязаны с колонной К-8 ГФУ-2 для отделения бутанов и углеводородов С5+выше [2].

    Верхний продукт (смесь бутанов) колонны К-7 отводится через конденсаторы-холодильники Х-15 в емкость Е-13, откуда часть продукта насосом Н-9 (а, б), с температурой 20-50 ºС, подается на орошение К-7, а избыток откачивается на склад.

    Нижний продукт (стабильный газовый бензин) колонны К-7 из испарителя И-4 через теплообменник Т-5 и холодильник Х-14 с температурой 20-40 ºС и давлением 0,3-0,4 МПа направляется в товарный парк [2].

    Технологическая схема установки представлена на рисунке 1.2.


    1.6 Особенности технологического процесса ректификации, обуславливающие его пожаровзрывоопасность

    Основными показателями работы ГФУ являются четкость разделения сырья на составляющие компоненты и концентрация целевых компонентов во фракциях. Качество их должно удовлетворять требованиям технических условий к стандартам [1].

    Исходя из утвержденного технологического регламента, для каждой установки разрабатывается своя технологическая карта, в которой указывают: оптимальный режим работы всего оборудования - пределы изменений основных параметров процесса - давление в колоннах и емкостях орошения, температура верха и низа (на контрольной тарелке) колонн, расход сырья, расход орошения, уровни в кипятильниках, емкостях орошения и химический состав получаемых продуктов.

    Четкость ректификации и устойчивость технологического режима в колоннах, а вместе с тем и качество получаемой на ГФУ продукции зависит в основном от надежной работы контрольно-измерительных приборов и автоматических регуляторов расхода, давления, уровня, температуры, анализаторов качества и от опытности обслуживающего персонала.

    Устойчивая работа ректификационных колонн ГФУ возможна при обеспечении:

    равномерной подачи сырья в целом на установку и на загрузку отдельных колонн;

    равномерной подачи орошения;

    постоянства состава сырья;

    надежного обеспечения установки теплоносителем и хладоагентами.

    Для правильного ведения технологического режима необходимо знать влияние каждого из приведенных условий на процесс ректификации и на качество получаемых продуктов [1].

    Постоянство подачи сырья. Сырье в ГФУ поступает непосредственно из газоотбензинивающих установок или же из товарно-сырьевых парков. При неравномерной подаче сырья контактирующие на тарелках пары и флегма не приходят в состояние равновесия из-за того, что в одних случаях уровни в тарелках будут низкими, а в других - высокими, и поэтому возможен прорыв паров и, кроме того, скорость паров тоже будет разной. При предельных нагрузках по сырью возможен заброс флегмы с нижележащих тарелок на вышележащие и вынос вспененной жидкой фазы через шламовую трубу колонны.

    Неравномерность загрузки сырьем второй и последующих колонн зависит не только от неравномерности подачи первоначального сырья на установку, но и от устойчивой работы регуляторов уровня и откачивающих насосов (в том случае, когда сырье в колонны подается насосами).

    В схемах автоматического регулирования современных ректификационных колонн уровни в емкостях, откуда откачивается сырье в колонны, корректируются по расходу. Всякие изменения загрузки колонн необходимо проводить плавно, без рывков, ориентируясь на показания расходомеров и анализаторов качества — хроматографов на потоке дистиллятов и кубовых остатков [1].

    Постоянство подачи орошения. Обычно состав дистиллята регулируется изменением температуры верха колонны, что достигается изменением подачи орошения. Для точного регулирования заданного состава дистиллята считается контрольной температура на промежуточной тарелке (четвертой пли пятой, считая сверху), где незначительное изменение составов контактирующих паров и флегмы сопровождается большим изменением температуры, чем на верхней тарелке.

    Если при повышении содержания в.к.к. в дистилляте резко увеличить орошение, то повышается содержание н.к.к. в кубовом остатке. Изменение орошения нужно также производить плавно, без рывков в течение определенного времени и также ориентируясь на показания расходомеров и анализаторов качества. Если состав сырья не меняется, то пропорционально изменению расхода должны изменяться расход холодного орошения и расход теплоносителя. При значительном уменьшении расхода питания в колонне расход орошения можно уменьшить только до 0,4-0,6 от максимальной величины. Это делается для того, чтобы способствовать сохранению четкой ректификации до восстановления оптимальной подачи сырья в колонну [1].

    Постоянство давления. Повышение давления в колонне может быть вызвано уменьшением количества охлаждающей воды, поступающей в конденсаторы, или образованием накипи и шлама в трубных пучках конденсаторов, особенно в летнее время, а повышение давления в деэтанизаторе, где хладоагентом служит пропан или аммиак,— уменьшением подачи этого хладоагента.

    На ГФУ, в которых применяют аппараты воздушного охлаждения, изменение давления в емкостях орошения, а равно и в колоннах, вызывается изменением температуры окружающего воздуха в разное время суток, остановкой одного или нескольких вентиляторов. В летний период должны работать все вентиляторы с полностью открытыми жалюзи. В период жаркой погоды должны быть включены и увлажнители воздуха, нагнетаемого вентиляторами. И если это не помогает, то необходимо часть неконденсирующихся паров подавать на прием сырьевых компрессоров.

    В зимний период часть потока паров, выходящих из шлемовой трубы колонны, необходимо через автоматический регулятор перепускать в емкости орошения, т.е. мимо конденсаторов. Этим самым обеспечивается поддержание нужного давления в емкостях и подпора па приеме насосов орошения. Независимо от температуры окружающего воздуха температура конденсации дистиллята в зимнее время не должна быть ниже 20-25 °С.

    Регулирование работы ректификационных колонн затруднительно из-за большой их инерционности. Следует иметь в виду, что при регулировании процесса ректификации изменение режима очень медленно распространяется от тарелки к тарелке. Так, возмущение при изменении подачи сырья или орошения доходит до кубовой части колонны через значительный промежуток времени. Такое запаздывание зависит не только от количества тарелок, по которым стекает флегма, но и от величины вместимости куба колонны.

    Обслуживающий персонал ГФУ и других установок с ректификационными колоннами должен знать влияние всех параметров на процесс ректификации и воздействовать на процесс изменением не одного из какого-либо параметров, но по совокупности нескольких [1].

    1.7 Статистика чрезвычайных ситуаций на предприятиях нефтегазового комплекса


    Анализ характера и причин аварий в нефтегазовой промышленности показывает, что в последнее десятилетие большинство из них (около 95 %) связано со взрывами: 54% в аппаратуре, 46% в производственных зданиях и на открытых технологических площадках. Статистика ЧС за 2000-2005 гг показывает, что из общего количества взрывов в 42,5% случаев происходят взрывы сжиженных углеводородных газов. При залповых выбросах горючих 7 % не сопровождаются воспламенением, 35% завершаются взрывами, в 23% случаев взрывы сочетаются с пожарами, 34% сопровождаются только пожарами (рисунок 1.3) [9].

     

    Рисунок 1.3 – Диаграмма последствий залповых выбросов СУГ


    Аварийность промышленных предприятий имеет тенденцию к росту, о чем свидетельствует статистика аварий в Российской Федерации и в мире.

    04.01.1966 г. В Фейзене (Франция) произошел взрыв резервуара с жидким пропаном в результате пролива вещества из системы спуска воды из резервуара и воспламенения облака от проезжавшей невдалеке автомашины. Погибли 17 человек и получили травмы 80 человек [10].

    19.11.1984 г. В пригороде Мехико Сан-Хуан в хранилище сжиженных нефтяных газов в результате утечек большого их количества из трубопровода и резервуара произошло несколько взрывов, начался пожар. Погибло более 500 человек, больше 7000 получили травмы [10].

    11.04.2000г. в Якутске произошел пожар в результате несанкционированного отбора продукции с эксплуатационной колонны оператором ГПЗ. Отбор производился в месте, где расположен уровнемер. Температура продуктов в колонне на момент аварии составляла 77 С0 (тогда как при атмосферном давлении температура кипения получаемой продукции 38 С), т.е. фактически производился слив кипящего раствора, что является грубейшим нарушением правил пользования газофракционирующей установкой. Канистра, в которую непосредственно направлялся кипящий раствор, разорвалась и произошло воспламенение. Причиной возгорания продукта предположительно является искра, возникшая либо в результате разряда статического электричества, либо в результате удара оторвавшейся горловины канистры о находящееся внутри газофракционирующей установки оборудование [11].

    23.08.2000 г. в цехе полимеризации бутилкаучука ОАО "Синтезкаучук" в Тольятти (Самарская область) вспыхнул пожар из-за утечки газа при проведении ремонтных работ. В результате пожара один человек погиб и трое госпитализированы.

    08.09.2002 г. на Сосновском газоперерабатывающем заводе (Вуктыльский район Коми) во время ремонтных работ по устранению свища в одной из веток конденсатопровода произошел взрыв, при этом погиб один человек и шестеро получили ожоги различной степени тяжести [11].

     05.01.2004 г. на Ямале произошел прорыв магистрального газопровода. На газопроводе «Уренгой — Центр II» в результате коррозии металла произошел взрыв с возгоранием. Пострадавших нет.

    10.01.2004 г. в Польше неподалеку от города Вадовице возник пожар на газопроводе, снабжавший газом газонаполнительную станцию. Высота пламени достигала 50 метров. Причиной аварии послужила трещина в газопроводе, который находился под высоким давлением. Пострадавших нет.

    20.01.2004 г. В Алжире на газоперерабатывающем заводе в результате коррозии взорвался резервуар со сжиженным пропаном, 27 человек погибло, 74 человека получили травмы различной степени тяжести.

    20.02.2004 г. в Новороссийске в районе нефтяного терминала Грушовое произошел разрыв магистрального газопровода Крымск-Новороссийск-Геленджик, возник пожар. Пострадавших нет [13].

    22.03.2005 г. в Муравленко (Ямало-Ненецкий автономный округ, ЯНАО) на газоперерабатывающем заводе при вскрытии тепловой камеры произошла вспышка паров газа без распространения пламени и горения, в результате которой пострадали 4 человека [13].

    26.07.2005 г. На Ново-Уфимском нефтеперабатывающем заводе прогремел сильный взрыв, причиной взрыва стал прорыв трубопровода газовой магистрали в цехе гидроочистки бензина. Жертв и пострадавших нет [13].

    На основании вышеизложенных данных можно сделать вывод, что к наиболее тяжелым последствиям приводят аварии, связанные с разрушением сборников, содержащих сжиженные газы, или со взрывами газовых смесей внутри резервуаров при их переполнении, повышении температуры сверхдопустимой, применении несоответствующих материалов и низком качестве изготовления сосудов. Основными причинами аварий являются ошибки и нарушение правил техники безопасности персоналом, неисправность и изношенность оборудования (рисунок 1.4) [12].

    1 – Ошибки персонала (30%);

    2 – Нарушение технологического процесса (25%);

    3 – Отказы средств регулирования и защиты (20%);

    4 – Пропуск через фланцевые соединения (10%);

    5 – Коррозия (5%);

    6 – Механические повреждения (5%);

    7 – Сбои в подаче электроэнергии (5%).

    Рисунок 1.4 – Причины возникновения аварий на предприятиях нефтегазопереработки


    1.8 Анализ пожаровзрывоопасности газоперерабатывающего производства


    Характерные аварии в газоперерабатывающей промышленности подразделяются на взрывы на открытых установках и в производственных помещениях, вызванные выбросами по каким-либо причинам горючих и взрывоопасных веществ в атмосферу, и взрывы внутри технологического оборудования, сопровождаемые его разрушением и выбросом горючих продуктов, что влечет за собой вторичные взрывы или пожары в атмосфере.

    Основное количество аварий связано с ведением химико-технологических процессов (81%) , с подготовкой оборудования к ремонту, ремонтными работами или приемом оборудования из ремонта (13%), по другим причинам (6%).

    Аварии в газоперерабатывающей промышленности являются следствием несовершенства отдельных технических средств, недостатков проектов, а также ошибочных действий производственного персонала. На основании обобщения и анализа результатов технического расследования аварий на предприятиях отрасли выявлены следующие основные причины и условия возникновения и развития аварий [14]:

    1) Пожаровзрывоопасные свойства применяемого сырья, конечных и побочных продуктов;

    2) Аппаратное оформление – наличие на установке аппаратов, находящихся под давлением, высокая плотность расположения оборудования (вероятность развития сценария с эффектом «домино»), значительные объемы взрывоопасных материалов, находящихся в аппаратах;

    3) Ведение процесса при сравнительно высоких давлениях (до 1,6 МПа) и высоких температурах (до 250 ºС).

    4) Выход параметров технологического процесса за критические значения – изменение давления, изменение температуры, изменение уровня жидкости, изменение состава сырья, изменение дозы и скорости подачи сырья.

    5) Нарушение герметичности оборудования. Наибольшее число случаев разгерметизации технологических систем связано с повышенной скоростью коррозии металла, сверхдопустимым износом оборудования и трубопроводов, некачественным выполнением сварных швов, пропуском через прокладки фланцевых соединений, недостаточным уплотнением сальниковых набивок, конструктивными недостатками аппаратов, сброс продукта через предохранительные клапана в атмосферу без сжигания.

    6) Неисправность средств регулирования и противоаварийной защиты процессов. Пятая часть взрывов, пожаров и загораний на предприятиях газоперерабатывающей промышленности обусловлена несовершенством, неисправностью или необоснованным отключением контрольно-измерительных приборов, блокировок и других средств автоматического управления процессом. Наибольшую опасность представляют отказы в работе средств регулирования заданных параметров: температуры, давления, уровней жидкости в аппаратуре, скорости дозирования и состава материальных сред, которые, в конечном итоге, приводят к разгерметизации технологического оборудования, выбросам в атмосферу взрывоопасных продуктов и крупным авариям. Многие отклонения режима, вызванные отказами и средств регулирования, являются также и причиной возникновения источников воспламенения или импульсов взрыва [22].

    7) Непрофессиональные и ошибочные действия обслуживающего персонала, в том числе, при проведении сварочных и ремонтных работ, неудовлетворительная ревизия состояния оборудования и трубопроводов; нарушение правил технической эксплуатации, а также некомпетентность при принятии решений в экстремальных ситуациях;

    8) Невыполнение на предприятиях графиков планово-предупредительного ремонта оборудования, некачественный монтаж или ремонт оборудования.

    9) Возможность появления источника воспламенения – образование зарядов статического электричества при движении газов и жидкостей по аппаратам и трубопроводам, применение тока высокого напряжения для электродвигателей, применение при производстве работ инструментов, дающих при ударах искру, производство ремонтных работ с применением открытого огня, неисправность или отсутствие средств молниезащиты и защиты от статического электричества, нарушение правил противопожарной дисциплины, неисправность заземления и изоляции электрооборудования, неисправность средств пожаротушения, открытые форсунки печей [19].

    Таким образом, выявленные основные причины, условия возникновения и развития взрывов показывают, что низкий уровень обеспечения взрывопожаробезопасности отдельных предприятий создает повышенную вероятность возникновения на них взрыва.

    Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.