Самостоятельная работа как средство обучения решению уравнений в 5-9 классах
Самостоятельная работа как средство обучения решению уравнений в 5-9 классах
Министерство общего и профессионального образования РФ
Светлоградский педагогический колледж
Дипломная работа
Самостоятельная работа как средство обучения решению уравнений в 5 - 9
классах
Выполнила:
Руководитель:
Светлоград, 2000 г.
Содержание:
|Введение: | |3 |
|Глава 1. |Теоретические аспекты обучению уравнений в 5 |4 |
| |- 9 классах с использованием самостоятельной | |
| |работы. | |
|§ 1. |Из истории возникновения уравнений. |4 |
|§ 2. |Содержание и роль линий уравнений в |8 |
| |современном школьном курсе математики. | |
|§ 3. |Основные понятия линий уравнения. |11 |
|§ 4. |Обобщенные приемы решения уравнений с одной |23 |
| |переменной в школьном курсе алгебры. | |
|§ 5. |Методика изучения основных классов уравнений |28 |
| |и их систем. | |
|Глава II. |Методико - педагогические основы |36 |
| |использования самостоятельной работы, как | |
| |средство обучения решению уравнений. | |
|§ 1. |Организация самостоятельной работы при |36 |
| |обучении решению уравнений. | |
|§ 2. |Исследовательская работа |69 |
|Заключение | |73 |
|Библиография | |74 |
|Приложение | |75 |
Введение
Уравнения в школьном курсе алгебры занимают ведущее место. На их
изучение отводится времени больше, чем на любую другую тему. Действительно,
уравнения не только имеют важное теоретическое значение, но и служат чисто
практическим целям. Подавляющее большинство задач о пространственных формах
и количественных отношениях реального мира сводится к решению различных
видов уравнений. Овладевая способами их решения, мы находим ответы на
различные вопросы из науки и техники (транспорт, сельское хозяйство,
промышленность, связь и т. д.). Так же для формирования умения решать
уравнения большое значение имеет самостоятельная работа учащегося при
обучении решения уравнений.
Проблема методики формирования умений самостоятельной работы является
актуальной для учителей всех школьных предметов, в том числе и для учителей
математики. Ее решение важно еще и с той точки зрения, что для успешного
овладения современным содержанием школьного математического образования
необходимо повысить эффективность процесса обучения в направлении
активизации самостоятельной деятельности учащихся. Для этого требуется
четко определить систему умений и навыков, овладение которыми приводит к
самостоятельному выполнению работ различного характера. Важным также
является раскрытие процесса формирования умений и навыков самостоятельной
работы при обучении курсам математики, при этом необходимо показать, как в
ходе преподавания математики учитель может осуществить формирование у
учащихся отмеченных выше умений и навыков.
Поэтому я решила работать над данной темой дипломной работы:
«Самостоятельная деятельность, как средство обучения решению уравнений в 5-
9 классах.
Я хочу в своей дипломной работе рассмотреть вопросы связанные с
изучением уравнений в курсе математики и как при помощи схемной работы
улучшить качество усвоения материала дипломной темы.
Поэтому при работе над дипломной работы я перед собой поставила следующие
цели и задачи.
1. Изучить психолого - педагогическую и методическую литературу, Касающуюся
изучению уравнений. Проанализировать школьные учебники и выделить в них
место уравнений.
2. Составить конспекты уроков обучения решения различных видов уравнений с
использованием самостоятельной работы.
3. Разработать самостоятельных работ для учащихся по различным темам
уравнений.
Провести наблюдения за использованием класса в процессе самостоятельной
работы.
Глава I. Теоретические аспекты обучению уравнений в 5 - 9 классах с
использованием работы
§ Из истории возникновения уравнений.
Алгебра возникла в связи с решением разнообразных задач при помощи
уравнений. Обычно в задачах требуется найти одну или несколько неизвестных,
зная при этом результаты некоторых действий, произведенных над искомыми и
данными величинами. Такие задачи сводятся к решению одного или системы
нескольких уравнений, к нахождению искомых с помощью алгебраических
действий над данными величинами. В алгебре изучаются общие свойства
действий над величинами.
Некоторые алгебраические приемы решения линейных и квадратных уравнений
были известны еще 4000 лет назад в Древнем Вавилоне.
Квадратные уравнения в Древнем Вавилоне
Необходимость решать уравнения не только первой, но и второй степени[1] еще
в древности была вызвана потребностью решать задачи, связанные с
нахождением площадей земельных участков и с земляными работами военного
характера, а также с развитием астрономии и самой математики. Квадратные
уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя
современную алгебраическую запись, можно сказать, что в их клинописных
текстах встречаются, кроме неполных, и такие, например, полные квадратные
уравнения:
[pic][pic] [pic]
Правило решения этих уравнений, изложенное в вавилонских текстах,
совпадает по существу с современным, однако неизвестно, каким образом дошли
вавилоняне до этого правила. Почти все найденные до сих пор клинописные
тексты приводят только задачи с решениями, изложенными в виде рецептов, без
указаний относительно того, каким образом они были найдены.
Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных
текстах отсутствуют понятие отрицательного числа и общие методы решения
квадратных уравнений.
Как составлял и решал Диофант квадратные уравнения
В «Арифметике» Диофанта нет систематического изложения алгебры, однако
в ней содержится систематизированный ряд задач, сопровождаемых объяснениями
и решаемых при помощи составления уравнений разных степеней.
При составлении уравнений Диофант для упрощения решения умело выбирает
неизвестные.
Вот, к примеру, одна из его задач.
Задача 11. «Найти два числа, зная, что их сумма равна 20, а
произведение — 96».
Диофант рассуждает следующим образом: из условия задачи вытекает, что
искомые числа не равны, так как если бы они были равны, то их произведение
равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины
их суммы, т. е. 10 + х, другое же меньше, т. е.. 10 - х. Разность между
ними 2х. Отсюда уравнение
(10+x)(10—x) =96,
или же
100 —x2 = 96.
x2 - 4 = 0
Отсюда х == 2. Одно из искомых чисел равно 12, другое 8. Решение х = - 2
для Диофанта не существует, так как греческая математика знала только
положительные числа.
Если мы решим эту задачу, выбирая в качестве неизвестного одно из
искомых чисел, то мы придем к решению уравнения
y(20-y)=96
y2 - 20y+96=0
Ясно, что, выбирая в качестве нtизвестного полуразность искомых чисел,
Диофант упрощает решение; ему удается свести задачу к решению неполного
квадратного уравнения
Квадратные уравнения в Индии
Задачи на квадратные уравнения встречаются уже в астрономическом
трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и
астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.),
изложил общее правило решения квадратных уравнений, приведенных к единой
канонической форме:
ax2 + bх = с, а> 0. (1)
В уравнении (1) коэффициенты, кроме а, могут быть и отрицательными. Правило
Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования в решении
трудных задач. В одной из старинных индийских книг говорится по поводу
таких соревнований следующее: «Как солнце блеском своим затмевает звезды,
так ученый человек затмит славу другого в народных собраниях, предлагая и
решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары.
3 а д а ч а 13.
|«Обезьянок резвых стая |А двенадцать по лианам |
|Всласть поевши, развлекалась |Стали прыгать, повисая |
|Их в квадрате часть восьмая |Сколько ж было обезьянок, |
|На поляне забавлялась |Ты скажи мне, в этой стае?» |
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней
квадратных уравнений.
Соответствующее задаче 13 уравнение
[pic]
Бхаскара пишет под видом
[pic]x2 - 64x = - 768
и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к
обеим частям 322, получая затем:
x2 - б4х + 322 = -768 + 1024,
(х - 32)2 = 256,
х - 32= ±16,
x1 = 16, x2 = 48.
Квадратные уравнения у ал-Хорезми
В алгебраическом трактате ал-Хорезми дается классификация линейных и
квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их
следующим образом:
1) «Квадраты равны корням», т. е. ах2 = bх.
2) «Квадраты равны числу», т. е. ах2 = с.
3) «Корни равны числу», т. е. ах = с.
4) «Квадраты и числа равны корням», т. е. ах2 + с = bх.
5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.
6) «Корни и числа равны квадратам», т. е. bх + с == ах2.
Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены
каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не
берутся во внимание уравнения, у которых нет положительных решений. Автор
излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и
ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не
говоря о том, что оно чисто риторическое, следует отметить, например, что
при решении неполного квадратного уравнения первого вида ал-Хорезми, как и
все математики до XVII в., не учитывает нулевого решения, вероятно, потому,
что в конкретных практических задачах оно не имеет значения. При решении
полных квадратных уравнений ал-Хорезми на частных числовых примерах
излагает правила решения, а затем их геометрические доказательства.
Приведем пример.
Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень»
(подразумевается корень уравнения х2 + 21 = 10х).
Решение автора гласит примерно так: раздели пополам число корней,
получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4.
Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет
искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.
Трактат ал-Хорезми является первой дошедшей до нас книгой, в которой
систематически изложена классификация квадратных уравнений и даны формулы
их решения.
§ 2. Содержание и роль линии уравнений в современном школьном курсе
математики
Материал, связанный с уравнениями, составляет значительную часть школьного
курса математики. Это объясняется тем, что уравнения широко используются в
различных разделах математики, в решении важных прикладных задач.
Истоки алгебраических методов решения практических задач связаны с
наукой древнего мира. Как известно из истории математики, значительная
часть задач математического характера, решаемых египетскими, шумерскими,
вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный
характер. Однако уже тогда время от времени возникали задачи, в которых
искомое значение величины задавалось некоторыми косвенными условиями,
требующими, с нашей современной точки зрения, составления уравнения или
системы уравнений. Первоначально для решения таких задач применялись
арифметические методы. В дальнейшем начали формироваться начатки
алгебраических представлений. Например, вавилонские вычислители умели
решать задачи, сводящиеся с точки зрения современной классификации к
уравнениям второй степени. Таким образом, был создан метод решения
текстовых задач, послуживший в дальнейшем основой для выделения
алгебраического компонента и его независимого изучения.
Это изучение осуществлялось уже в другую эпоху сначала арабскими
математиками (VI—Х вв. н. э.), выделившими характерные действия,
посредством которых уравнения приводились к стандартному виду (приведение
подобных членов, перенос членов из одной части уравнения в другую с
переменой знака), а затем европейскими математиками Возрождения, в итоге
длительного поиска создавшими язык современной алгебры (использование букв,
введение символов арифметических операций, скобок и т. д.). На рубеже
XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим
предметом, методом, областями приложения, была уже сформирована. Дальнейшее
ее развитие, вплоть до нашего времени, состояло в совершенствовании
методов, расширении области приложений, уточнении понятий и связей их с
понятиями других разделов математики. В этом процессе все яснее становилась
важность роли, которую играло понятие уравнения в системе алгебраических
понятий.
Открытие координатного метода (Декарт, XVII в.) и последовавшее за ним
развитие аналитической геометрии позволили применить алгебру не только к
задачам, связанным с числовой системой, но и к изучению различных
геометрических фигур. Эта линия развития алгебры упрочила положение
уравнения как ведущего алгебраического понятия, которое связывалось теперь
уже с тремя главными областями своего возникновения и функционирования:
a) уравнение как средство решения текстовых задач;
b) уравнение как особого рода формула, служащая в алгебре объектом
изучения;
c) уравнение как формула, которой косвенно определяются числа или
координаты точек плоскости (пространства), служащие его решением.
Каждое кз этих представлений оказалось в том или ином отношении полезным.
Таким образом, уравнение как общематематическое понятие многоаспектно,
причем ни один из аспектов нельзя исключить из рассмотрения, особенно если
речь идет о проблемах школьного математического образования.
Ввиду важности и обширности материала, связанного с понятием уравнения,
его изучение в современной методике математики организовано в содержательно
- методическую линию — линию уравнений и неравенств. Здесь рассматриваются
вопросы формирования понятий уравнения и неравенства, общих и частных
методов их решения, взаимосвязи изучения уравнений и неравенств с числовой,
функциональной и другими линиями школьного курса математики.
Выделенным областям возникновения и функционирования понятия уравнения в
алгебре соответствуют три основных направления развертывания линии
уравнений и неравенств в школьном курсе математики.
а) Прикладная направленность линии уравнений раскрывается главным образом
при изучении алгебраического метода решения текстовых задач. Этот метод
широко применяется в школьной математике, поскольку он связан с обучением
приемам, используемым в приложениях математики.
В настоящее время ведущее положение в приложениях математики занимает
математическое моделирование. Используя это понятие, можно сказать, что
прикладное значение уравнений, их систем определяется тем, что они являются
основной частью математических средств, используемых в математическом
моделировании.
б) Теоретико-математическая направленность линии уравнений раскрывается в
двух аспектах: во-первых, в изучении наиболее важных классов уравнений, и
их систем и, во-вторых, в изучении обобщенных понятий и методов,
относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной
математики. Основные классы уравнений связаны с простейшими и одновременно
наиболее важными математическими моделями. Использование обобщенных понятий
и методов позволяет логически упорядочить изучение линии в целом, поскольку
они описывают то общее, что имеется в процедурах и приемах решения,
относящихся к отдельным классам уравнений, неравенств, систем. В свою
очередь, эти общие понятия и методы опираются на основные логические
понятия: неизвестное, равенство, равносильность, логическое следование,
которые также должны быть раскрыты в линии уравнений
в) Для линии уравнений характерна направленность на установление связей с
остальным содержанием курса математики. Эта линия тесно связана с числовой
линией. Основная идея, реализуемая в процессе установления взаимосвязи этих
линий,— это идея последовательного расширения числовой системы. Все
числовые области, рассматриваемые в школьной алгебре и началах анализа, за
исключением области всех действительных чисел, возникают в связи с решением
каких-либо уравнений и их систем. Области иррациональных и логарифмических
выражений связаны соответственно с уравнениями хk = b (k - натуральное
число, большее 1) и ax=b.
Связь линии уравнений с числовой линией двусторонняя. Приведенный пример
показывает влияние уравнений на развертывание числовой системы. Обратное
влияние проявляется в том, что каждая вновь введенная числовая область
расширяет возможности составления и решения различных уравнений. Например,
введение арифметического квадратного корня из рациональных чисел позволяет
записывать корни не только уравнений вида х2 = b, где b—неотрицательное
Страницы: 1, 2, 3, 4, 5, 6
|