МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Прогнозирование последствий чрезвычайных ситуаций на гидротехнических сооружениях Павловской ГЭС



    Ниже рассмотрены аварии плотин с катастрофическими последствиями, связанные с недооценкой отдельных факторов.

    Гравитационная плотина Сан-Френсис в Калифорнии, США, высотой 62,5 м, длиной по гребню 186 м, объёмом водохранилища 46 млн. м3 была построена в период, когда оценке свойств основания уделялось мало значения. Основание плотины было сложным по строению и свойствам: на левом берегу и русловой части каньона залегали сланцы с прочностью на сжатие 25-77 МПа (исследования пород основания были проведены только после аварии), правобережное примыкание представлено конгломератами с включениями гипса, прочными в сухом состоянии (прочность на сжатие составила 4,2-13,2 МПа). После замачивания прочность образцов снизилась до 1,5-3,8 МПа, а два образца распались. Причиной низкой прочности водонасыщенных конгломератов послужил гипс. Контакт обоих типов пород в основании плотины был представлен разломом, являвшимся оперением известного калифорнийского разлома Сан-Андреас. Активность разлома при строительстве отмечена не была.

    При проектировании плотины расчётное давление на конгломераты было принято 1,3 МПа, поскольку показатели породы до аварии не изучались. Цементация основания проектом предусмотрена не была, а дренаж был выполнен в центральной части плотины, сохранившейся неразрушенной. Наполнение водохранилища было начато в 1926 г. и к марту 1928 г. было завершено. С начала наполнения водохранилища в основании плотины была зафиксирована фильтрация с расходом 56 л/с, которая с течением времени возрастала. Осмотр плотины главным инженером 12 марта 1928 года за день до катастрофы не привел к выявлению опасных дефектов в состоянии сооружения. Ночью 13 марта 1928 года произошло разрушение плотины. Число погибших составило 428 человек, убытки от действия волны прорыва в 10 раз превысили затраты на возведение сооружения и составили 150 млн. долларов в ценах 1975 года. По заключению многочисленных комиссий специалистов, расследовавших аварию, причиной ее было недостаточно прочное правобережное примыкание, сложенной конгломератами, и уменьшение их прочности под действием воды.

    Авария плотины послужила причиной принятия Закона о федеральном контроле за строительством плотин в штате Калифорния, в соответствии с которым все плотины высотой более 6 футов и объемом водохранилища более 18,5 тыс. кв. м подлежат контролю их состояния. В целом в США в настоящее время Федеральной энергетической комиссией (ФЕРГ) контролируется состояние более 2000 крупных водохранилищ из учтенных в кадастре более 67 тыс./ч.

    Катастрофой современной бетонной плотины, связанной с недоучетом особенностей строения скального основания, является разрушение и арочной плотины Мальпасе во Франции в 1959 году. Плотина Мальпасе высотой 66,5 м, длиной по гребню 222 м, водохранилищем объемом 51 млн. куб. м была возведена на реке Рейран на южном побережье Франции. Основание плотины, изучение свойств которого произведено после аварии, представлено гнейсами с модулем деформации 0,38 – 1,8 ГПа, прочностью на сжатие 32-42 МПа. Проницаемость породы не превышала 2 Люжон (единица водопроницаемости скальных пород, 1 Люжон равен расходу 1 л/с при давлении 1 МПа, поддерживаемого в течение 10 мин). Строительство этой тонкой арочной плотины было окончено в 1955 году, однако наполнение водохранилища производилось медленно. В процессе заполнения водохранилища один раз в год, в период постоянного уровня водохранилища, производились измерения деформаций плотины по реперам, забетонированным на низовой грани. За несколько недель до катастрофы, в октябре 1959 года, в днище гасителя водосброса были зафиксированы трещины, распространившиеся вдоль русла реки. 2 декабря 1959 года в 21.00 плотина разрушилась. В результате катастрофы погиб 421 человек, убытки в два раза превысили все затраты на строительство плотины и составили 68 млн. долларов. Комиссии, расследовавшие причины аварии, установили, что разрушение началось в левобережном примыкании, сложенном гнейсами, имевшими падение в нижнем бьефе, и тектоническое нарушение мощностью 80 см, заполненное глиной, секущее эти слои. Нарушение простиралось в основании левобережного примыкания на глубине 15 м под основанием плотины и выходило на поверхность ущелья в 30 м ниже плотины. Строение скального массива способствовало обжатию гнейсов при передаче нагрузки от водохранилища в примыкания и уменьшению водопроницаемости пород на два порядка по сравнению с естественным состоянием. Это послужило причиной передачи полного противодавления воды на обжатый скальный массив и его перемещению под действием этих нагрузок.

    Авария плотины Мальпасе послужила толчком повсеместного внедрения в практику плотиностроения дренажа скальных массивов и изучения поведения скальных массивов под нагрузкой в полевых условиях.

    Аварии плотин Вега де Терра в Испании в 1959 году, плотины Вайонт в Италии в 1963 году, привели к введению в практику натурных наблюдений за состоянием сооружения, детальных исследований свойств основания плотины до начала строительства.

    Другой по значимости внешней нагрузкой, вызвавшей отказы, в том числе и в последнее время, являются паводки вероятностью ниже расчетной величины. Анализ показывает, что всегда имеется риск превышения поверочного расхода на водосливе в течение расчетного срока службы сооружения. Для бетонных плотин эта вероятность, по нашим данным, составляет 8,9Е+04. На грунтовой плотине Мачху II в Индии определенный на основании 90-летних наблюдений расчетный расход 5,7 тыс. куб. м/с оказался превзойденным дважды в течение четырех лет эксплуатации, а в 1979 году – в 4,7 раза и достиг 26,6 тыс. куб. м/с. Это свидетельствует об исключительной важности правильной оценки расчетного водосбросного расхода. В разное время подобные катастрофы имели место на плотинах: Саут Форк в США, Зербино в Италии, Тоус в Испании и недавнее разрушение плотины Кулекхани в Непале.

    Сейсмические воздействия – сравнительно недавно учитываемый фактор при расчетах плотин, на который обратили внимание, по-видимому, после разрушения грунтовой плотины Шеффилд высотой 7,5 м в Калифорнии в 1925 году. Катастрофического разрушения крупной плотины в результате сейсмического воздействия не зарегистрировано, однако разрушения небольших плотин имели место. Так, бетонная гравитационная плотина Каньон дель Пато высотой 20 м в Перу в результате катастрофического 10-бального землетрясения с магнитудой 7 ¾ с эпицентром в 25 км от гор. Чимботе, в результате которого лавина скальных обломков перекрыла русло реки Санта, оказалась разрушенной. В катастрофическом Спитакском землетрясении в Армении в 1988 году интенсивностью 10 баллов небольшие гидроэлектростанции ДзораГЭС и Ленинаканская, расположенные в 20 км от эпицентра, получили повреждения в виде трещин. Неопределенность этого фактора и высокий социальный риск в случае аварии заставили отказаться от возведения в 1967-1970 гг. арочной плотины Оберн в Калифорнии, несмотря на то, что уже было израсходовано 360 млн. долларов.

    Отказы от других внешних воздействий составляет 4%. Так, ежегодно из-за затопления водохранилищ теряется 1% полезной ёмкости водоёмов. С введением ранней диагностики состояния плотин после серии катастроф в 60-е годы путём измерения и контроля потенциально опасных факторов риска вероятность разрушения плотин снизилась до 0,1% при росте риска повреждения. Затраты на ликвидацию таких повреждений значительны. Для многоарочной плотины Даниель Джонсон высотой 210 метров в провинции Квебек в Канаде, построенной по проекту французской фирмы «Коин и Белье», перепад температуры более в 50С вызвал трещинообразование в плотине и основании и потребовал проведения ремонтных работ по созданию теплозащитного экрана и укрепления основания стоимостью в 144 млн. долларов. [12, с. 40-50]



    1.5 Влияние водохранилища на экосистему речной долины


    Строительство водохранилищ имеет позитивные экономические и негативные экологические последствия, включая потенциальную опасность для населенных пунктов, лежащих на прилегающих к водохранилищу территориях. (Однако следует отметить, что значительные или заметные изменения в окружающей среде вызывают преимущественно крупные и некоторые средние водохранилища. Влияние небольших и малых водохранилищ на природу и хозяйство территории обычно невелико, а нередко и положительно.)

    Позитивная сторона довольно ясна: производство энергии, водоснабжение промышленных центров, ирригация и улучшение условий для водного транспорта, рекреация и др.

    Негативная сторона довольно многообразна и основана на реальном опыте:

    1.     В верхнем бьефе:

    §       развитие ветровой абразии;

    §       переработка берегов водохранилища и их трансформация;

    §       заболачивание новых территорий в результате подтопления их водохранилищем;

    §       изменение качества вод (содержание растворенного кислорода, эвтрофикация и т.д.);

    §       изменение термического и ледового режимов;

    §       аккумуляция в донных отложениях токсичных веществ;

    §       изменение уровневого и скоростного режимов;

    §       отчленение плотиной нерестилищ проходных и полупроходных рыб.

    2.     В нижнем бьефе:

    §        переосушение поймы в результате изменения водного режима;

    §        изменение качества вод;

    §        увеличение эрозионной способности благодаря осветлению воды в верхнем бьефе;

    §        изменение термического и ледового режимов;

    §        уменьшение частоты формирования руслоформирующего и поймоформирующего расходов;

    §        изменение местных климатических условий (увеличение влажности, скорости ветра и т.п.).

    Таким образом, при строительстве водохранилища для минимизации негативного воздействия на природную среду необходимо использовать критерии для выбора места для постройки (такие как коэффициенты использования земельной площади водохранилищем, расширения водной поверхности, падения растворенного кислорода в водохранилище во все месяцы года, коэффициент эвтрофирования, мелководности, термической стратификации, водообмена, выравнивания максимального расхода воды, экологический сток или экологически необходимые расходы и уровни воды во все фазы водного режима в годы различной обеспеченности, коэффициент развитости поймы). [10], [23, с. 75-76].


    1.6 Контроль, безопасность, законодательство (по зарубежным и российским примерам)


    Аварии, произошедшие во многих странах, стимулировали принятие законодательных мер по безопасности плотин, включающих постоянные наблюдения за состоянием объектов, контроль за соблюдением норм и правил эксплуатации, выявление и устранение повреждений, выполнение в срок профилактических ремонтов, проведение регулярных инспекций (не реже одного раза в 5 лет).

    Во Франции с 1966 г. все плотины, выше 20 м и образующие водохранилище объемом более 15 млн. куб. м, поставлены под особый контроль государства. Кроме обычных мер, обеспечивающих безопасность гидротехнических сооружений, контроль предусматривает испытания водосбросных устройств и полное опорожнение водохранилища один раз в 10 лет.

    В Швейцарии система контроля, принятая в 1957 г., обеспечивает наблюдение за всеми плотинами выше 10 м, за плотинами высотой 5-10 м, образующими водохранилища объемом более 50 тыс. куб. м, и за плотинами ниже 5 м, если их разрушение представляет опасность для территорий в нижних бьефах.

    В большинстве штатов США законодательство по безопасности плотин было принято в последнее десятилетие. В соответствии с законом инспекции подлежат все русловые плотины высотой более 1,83 м с водохранилищами объемом 61 667 куб. м, или высотой более 4,57 м с водохранилищами объемом 18 500 куб. м. В 1963 г. после аварии на плотине Болдуин Хиллз закон был распространен и на все плотины наливных водохранилищ.

    Разрушение плотины Тетон в 1976 г. так всколыхнуло американскую общественность, что вопросом безопасности гидросооружений заинтересовался президент США Джимми Картер. Его интерес еще более усилился после аварии во время урагана на небольшой частной плотине (ноябрь 1977 г.) в его родном штате Джорджия, в результате чего погибли 38 человек. Был созван специальный Межведомственный совет по безопасности плотин, в состав которого вошли федеральные агентства, занимающиеся проектированием, строительством и эксплуатацией этих сооружений.

    В 1979 г. Федеральное агентство по чрезвычайным ситуациям опубликовало «Директивы по безопасности плотин». Наиболее важной частью этого документа является раздел, в котором детально расписаны планы действий во время аварийных ситуаций. Они включают:

    ·        анализ причин и способов разрушения плотины (постепенное или внезапное),

    ·        восстановительные работы (меры по возмещению ущерба),

    ·        карты затоплений,

    ·        оповещение и предупреждение властей и населения,

    ·        планы эвакуации.

    В России в 1997 г. вступил в силу Федеральный закон «О безопасности гидротехнических сооружений», предусматривающий не только меры, осуществляемые и контролируемые государством, но и порядок обеспечения безопасной эксплуатации сооружений их собственниками и эксплуатирующими организациями. Обязательным является выполнение диагностического контроля за состоянием гидротехнических сооружений, их оснований с применением современной контрольно-измерительной аппаратуры и компьютерных систем мониторинга.

    Аварийное состояние многих гидротехнических объектов вызвало повышенное внимание со стороны водохозяйственных органов. Ведомства приняли конкретные шаги, обеспечивающие нормальное функционирование подпорных сооружений. В ежегодных отчетах МЧС России стали отмечаться наиболее опасные ситуации на гидросооружениях, обнародован справочный материал «Об экологических угрозах, связанных с техническим состоянием гидроузлов России».

    Для совершенствования систем контроля за опасными проявлениями стихийных и антропогенных факторов при эксплуатации гидросооружений Министерством топлива и энергетики и его подразделениями созданы комиссии. Образован Межведомственный комитет по контролю за их состоянием, в который вошли представители Минтопэнерго, Минприроды и МЧС, а в РАО «ЕЭС» функционирует Главный Энергонадзор.

    Как показывает практика, ущерб от аварий во много раз превышает стоимость сооружения. В то же время контроль, хотя бы в объеме 1-2 % его стоимости, значительно снижает вероятность аварий. Вот почему за состоянием плотин, шлюзов, дамб и других устанавливается жесткий мониторинг. Он подразумевает систему мер по наблюдению, оценке, контролю и управлению за состоянием гидротехнических объектов в целях предотвращения или уменьшения вероятности аварий и их катастрофических последствий. Эта система должна включать и фундаментальные исследования, в том числе:

    ·                   новые разработки по прогнозированию факторов риска, меры по соблюдению норм безопасности, корректировку инженерных решений на всех этапах создания и эксплуатации гидроузлов;

    ·                   разработку системы по раннему оповещению и защите населения, природных и хозяйственных объектов от катастроф;

    ·                   обучение населения поведению и действиям при авариях;

    ·                   разработку сценариев реагирования во время и после катастроф;

    ·                   оказание помощи пострадавшим;

    ·                   ликвидацию последствий. [1, с. 7-8]



    2. Описание предприятия


    2.1 Общие сведения по Павловской ГЭС


    Гидротехнические сооружения Павловской ГЭС расположены правом притоке реки Белой - на реке Уфе, и находятся в 177 км выше по течению г. Уфы. [13, с. 8]. Согласно [14, с. 71], можно привести некоторые параметры водотока (реки Уфы):

    «Площадь водосброса – 46 500 кв. км. Среднемноголетний сток – 10,5 куб. км. Среднемноголетний расход – 336 куб. м/сек. Максимально наблюденный расход – 4 800 куб. м/сек (май 1979 г.). Расчетный максимальный расход воды обеспеченностью

    ·                    0,1 % - 8 050 куб. м/сек (основной расчетный случай);

    ·                    0,1 % - 8 200 куб. м/сек (проверочный расчетный случай);

    ·                    1,0 % - 6 140 куб. м/сек;

    ·                    5,0 % - 4 880 куб. м/сек;

    ·                    10,0 % - 4 300 куб. м/сек.

    Средний расход летней межени – 285 куб. м/сек. Средний расход зимней межени – 125 куб. м/сек.»

    Павловская ГЭС является филиалом ОАО «Башкирэнерго». Генеральным директором ОАО «Башкирэнерго» является Салихов А. А. Главным инженером – Пискунов А. А.

    Полный почтовый адрес Павловской ГЭС: 452432, Республика Башкортостан, Нуримановский район, пгт. Павловка. Телефон: (3472) 31-54-95, 29-37-73. E-mail: postmasterpges bashen.elektra.ru. Директором Павловской ГЭС является Можаев Борис Иванович, главным инженером – Садретдинов Флюр Альмухаматович.

    Строительство Павловской ГЭС началось в 1950 г. и осуществлялось УфаГЭСстроем по проекту Московского отделения «Гидроэнергопроекта» («Мосгидэп»). 24 апреля 1959 г. состоялась приемка в эксплуатацию первой очереди электростанции, а приемка полностью законченного строительством гидроэнергетического узла в эксплуатацию государственной комиссией состоялась уже в июне 1961 г. [13, с. 8-9].

    Все гидросооружения по ГОСТ 3315-46 отнесены ко второму классу.

    Тип гидроэлектростанции – русловая. Расчетный напор – 22,00 м. Расчетный расход через один гидроагрегат (4 шт.) – 221 куб. м / с. Установленная мощность ГЭС – 166,4 МВт. Среднемноголетняя выработка электроэнергии – 590 млн. кВт*ч.

    В состав гидроузла входят:

    ·                   здание ГЭС совмещенное с водосливом;

    ·                   подводящий канал;

    ·                   отводящий канал;

    Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.