МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Прогнозирование последствий чрезвычайных ситуаций на гидротехнических сооружениях Павловской ГЭС

    Вследствие различия скоростей трех характерных точек (фронта, гребня и хвоста) волна постепенно «распластывается» по длине реки, уменьшая свою высоту и увеличивая длительность прохождения в очередном створе.

    После прохождения волны прорыва русло реки обычно сильно деформируется вследствие большой скорости течения воды в волне прорыва.

    Разрушительное действие волны прорыва является результатом резкого изменения уровня воды в нижнем и верхнем бьефах при разрушении напорного фронта и образования потока, перемещающегося с большой скоростью, изменения под его воздействием прочностных характеристик грунта.

    Основные оценочные параметры волны прорыва (попуска):

    ·                    максимальная в данном створе высота волны Нв и глубина потока Н=Нв + hб (hб – глубина реки до прохождения волны или бытовая глубина);

    ·                    скорость движения Сфр, Сгр, Схв и времена добегания tфр, tгр, tхв характерных точек волны прорыва до различных створов, расположенных ниже гидроузла;

    ·                    длительность прохождения волны Тв в выделенных створах, равную сумме времени подъема Тпод и спада Тсп уровня воды в них;

    ·                    средние Vср и поверхностные Vпов скорости течения в различных створах;

    ·                    наибольшая ширина В затопления речной долины.

    Масштабы чрезвычайных ситуаций при аварии на ГОО, сопровождающиеся образованием волны прорыва, зависят от типа и класса гидротехнического сооружения напорного фронта, от вида аварии (главным образом от размеров прорана), от параметров водохранилища и плотины (дамбы), от характеристик русла в нижнем бьефе, а также от топографических и гидрографических условий местности, подвергаемой затоплению. Поэтому прогнозирование возможного масштаба такой чрезвычайной ситуации должно осуществляться еще на стадии проектирования ГОО.

    Так, например, от прорыва плотины Череповецкой ГЭС на реке Шексне (Вологодская область) возможно образование трех зон катастрофического затопления с общей площадью 0,5 тыс. кв. км, в которые попадают один город (Череповец - частично), один поселок городского типа (Шексна – частично), один сельский населенный пункт с проживающим в них населением общей численностью 3,6 тыс. человек.

    Чрезвычайные ситуации, возникающие в результате разрушения сооружений напорного фронта и характеризующиеся основным поражающим фактором – волной прорыва и, соответственно, катастрофическим затоплением местности, нередко сопровождаются вторичными поражающими факторами:

    ·                    пожарами – вследствие обрывов и короткого замыкания электрических кабелей и проводов;

    ·                    оползнями, обвалами – вследствие размыва грунта;

    ·                    инфекционными заболеваниями – вследствие загрязнения питьевой воды, продуктов питания и др.

    Причины аварий, сопровождающихся прорывом гидротехнических сооружений напорного фронта и образованием волны прорыва, могут быть различны, как говорилось выше, но чаще всего такие аварии происходят по причине разрушения основания сооружения и недостаточности водосбросов. Процентное соотношение различных их причин приведено в таблице 1.4.1.


    Таблица 1.4.1.

    Частота различных причин аварий гидротехнических сооружений, сопровождающихся образованием волны прорыва

    Причина разрушения

    Частота, %

    Разрушение основания

    40

    Недостаточность водосбросов

    23

    Конструктивные недостатки

    12

    Неравномерная осадка

    10

    Высокое пороговое (капиллярное) давление в намытой плотине

    5

    Военные действия

    3

    Сползание откосов

    2

    Дефекты материалов

    2

    Землетрясения

    1

    Неправильная эксплуатация

    2

    ВСЕГО:

    100


    Процентное соотношение аварий для различных типов плотин представлено в таблице 1.4.2.


    Таблица 1.4.2.

    Частота аварий для различных типов плотин

    Тип плотины

    Аварии, %

    Земляная плотина

    53

    Защитные дамбы из местных материалов

    4

    Бетонная гравитационная

    23

    Арочная железобетонная

    3

    Плотины других типов

    17

    ВСЕГО:

    100


    Основной причиной прорыва естественных плотин, образованных при образовании запруд в речном русле обрушившимися массами горных пород (при землетрясениях, обвалах, оползнях), либо массами льда (при движении ледников), является их перелив через гребень такой плотины и размыв ее.

    Устойчивость и прочность гидротехнических сооружений напорного фронта задается по максимальным расчетным значениям уровня воды, скорости ветра, высоты волны, определяемым в соответствии со СниП 2.01.14-88.

    Обеспечение безопасности гидротехнических сооружений осуществляется в соответствии с общими требованиями Федерального закона «О безопасности гидротехнических сооружений», принятого Государственной Думой 23 июня 1997 года:

    ·                    обеспечение допустимого уровня риска аварий гидротехнических сооружений;

    ·                    представление деклараций безопасности гидротехнических сооружений;

    ·                    разрешительный порядок осуществления деятельности, указанной в статье 12 настоящего Федерального закона;

    ·                    непрерывность эксплуатации гидротехнических сооружений;

    ·                    осуществление мер по обеспечению безопасности гидротехнических сооружений, в том числе установление критериев их безопасности, оснащение гидротехнических сооружений техническими средствами в целях постоянного контроля за состоянием, обеспечение необходимой квалификации работников, обслуживающих гидротехническое сооружение;

    ·                    необходимость заблаговременного проведения комплекса мероприятий по максимальному уменьшению риска возникновения чрезвычайных ситуаций на гидротехнических сооружениях;

    ·                    достаточное финансирование мероприятий по обеспечению безопасности гидротехнических сооружений;

    ·                    ответственность за действия (бездействие), которые повлекли за собой снижение безопасности гидротехнических сооружений ниже допустимого уровня. [10, с. 24-32].

    Аварийный сброс водохранилища.

    При опорожнении водохранилища прежде всего активизируются экзогенные процессы, имевшие место до и после заполнения водохранилища, а также при его эксплуатации. Спуск водохранилища и отступание уреза воды вызовут оживление оползней, обвалов, осыпей. Возможно даже возникновение пыльных бурь на обнажающихся склонах.

    Ученые все больше внимания в последние годы обращают на последствия паводочных сбросов и сбросов воды через плотины в чрезвычайных ситуациях – не исключена активизация эндогенных процессов. Так, мощные сбросы воды в нижний бьеф могут спровоцировать «местные» землетрясения силой 1-2 балла.

    Спуск водохранилища вызовет также образование мелководных застойных зон, которые опасны как источники неблагоприятных бактериологических ситуаций.

    Последствия повреждения плотин для верхних бьефов гидроузлов сходны с последствиями искусственного сброса воды. В этом случае существенными могут быть не прямые, а косвенные потери, связанные с нарушениями водоснабжения и электроснабжения, водных путей, вынужденной переориентацией энергоемких производств. Но главные беды будут связаны с поступлением в нижний бьеф загрязненных вод, с необходимостью очистки ложа водохранилища от различных отложений, содержащих токсичные соединения, тяжелые металлы, пестициды, нефть и другие виды органических веществ, накапливающихся на дне. При этом отложения сорбируют токсические вещества до уровней, намного превышающих содержание их в водной толще. [1, с. 6-7].

    Основные параметры оценки последствий разрушения гидроузлов в нижнем бьефе.

    Наряду с расчетами последствий разрушения плотин, выполненными НИИ «Гидропроект», в лаборатории гидрологии Института географии РАН были разработаны основные методические подходы к расчету параметров волны прорыва, ее картографированию и оценке последствий. Благодаря разработанным критериям остроты ситуации установлены зоны различной степени опасности последствий разрушительного воздействия волны прорыва. Они ранжировались следующим образом: катастрофические, значительные, ощутимые и незначительные. Каждая из названных градаций характеризуется конкретными параметрами волны прорыва и, соответственно, разными последствиями (таблица 1.4.3). Сочетание значений критериев остроты, определяющих ситуации в нижних бьефах поврежденных гидроузлов, может быть различным и зависит в первую очередь от уклонов, геоморфологических особенностей долины, величины прорана, времени года (половодье на реке или межень). [1, с. 3-4].


    Таблица 1.4.3.

    Основные параметры оценки последствий разрушения гидроузлов в нижнем бьефе

    Градация последствий

    Характеристика последствий

    Критерии остроты:

    высота волны прорыва в % к высоте (h) плотины

    время добегания волны прорыва (t, час)

    Катастрофические

    Затопления больших территорий, паралич хозяйственной деятельности, полное изменение уклада жизни, огромный материальный ущерб, гибель людей

     примерно 100

    менее 1

    Значительные

    Частичное или полное затопление долины реки, существенные нарушения производственной деятельности и резкие изменения уклада жизни, массовая эвакуация населения и материальных ценностей, значительный материальный ущерб

    75 - 100

    1 - 4

    Ощутимые

    Затопления сравнительно больших участков речных долин, отдельные нарушения уклада жизни и производственной деятельности людей, частичная эвакуация населения, ощутимый материальный ущерб

    50 - 75

    4 - 24

    Незначительные

    Небольшие подъемы уровней воды и площади затоплений, сохранение режима жизни и производственной деятельности, незначительный материальный ущерб

    менее 50

    более 24


    Влияние на обстановку в населенных пунктах и повреждения, возникающие в результате воздействия.

    Обстановка в населенных пунктах существенно зависит от морально-психологического состояния населения, а также инженерной обстановки. На морально-психологическое состояние населения влияют степень и сроки оповещения, уровень заблаговременной подготовки населения к действиям в случае прорыва плотины или наводнения, время года и суток, скорость и высота волны прорыва, скорость подъема воды и другие факторы.

    Если заблаговременная подготовка не проводилась, то возникает паника, неорганизованное отступление и бегство от стихии, которые приводят к заторам и пробкам на путях эвакуации, дополнительным жертвам даже в результате образовавшейся давки. Усугубляют эту обстановку холодная, ненастная погода и темное время суток.

    При заблаговременном оповещении и подготовке населения идет оперативная организованная эвакуация населения и материальных ценностей, мобилизуются органы управления и спасательные команды с техникой.

    Оценка обстановки складывается из оценки параметров волны прорыва или возникающего в результате прорыва плотины наводнения и их влияния на здания, сооружения, почву, систему жизнеобеспечения.

    Воздействие волны прорыва и возникающего в результате этого резкого подъема воды на населенный пункт может быть следующим:

    ·        гидродинамический удар, воздействующий на здания и сооружения и приводящий к их разрушению;

    ·        затопление водой жилищ, промышленных и сельскохозяйственных объектов, полей с выращенным урожаем, гибель скота;

    ·        потеря капитальности зданий и сооружений;

    ·        повреждение и порча оборудования предприятий;

    ·        разрушение гидротехнических сооружений и коммуникаций, расположенных ниже разрушенного гидроузла;

    ·        длительное гидравлическое давление на элементы мостов (опоры и т. п.);

    ·        затопление и разрушение дорог и др. [11, с. 71-79]

    Статистика и причины аварий плотин.

    Из достоверно известных 40 веков испытания человечеством водных ресурсов на Земле, ХХ век можно считать периодом наиболее активного освоения пресных вод, в течение которого из 37,3 тыс. куб. км годового объёма стока рек в мире оказались зарегулированными около 6 тыс. куб. км. При росте населения Земли за период с 1,65 млрд. человек в 1900 г. до 5,2 млрд. человек в 1990 г. в ряде регионов Земного шара водные ресурсы оказались на пределе испытания, возникала серьёзная озабоченность состояния окружающей среды.

    Регулирование 6 тыс. куб. км объёма воды речного стока потребовало возведения 36 235 высоких плотин всех типов, тогда как на начало ХХ века насчитывалось порядка 1000 плотин. Возведение ГТС, как правило, в густо населённых районах всегда выдвигало ряд проблем, важнейшей из которых являлось обеспечение надёжности сооружений и безопасности населения на участке его расположения. Безопасность плотин беспокоила уже первых гидростроителей древности: почти 5 тыс. лет назад при создании водохранилища для водоснабжения столицы Египта г. Мемфиса проблемы безопасности плотины были важнейшими, а успешная эксплуатация сооружения на протяжении последних двух тысячелетий служит примером обеспечения долговечности плотин и сегодня.

    По данным Международной комиссии по большим плотинам, из 36 235 плотин, эксплуатируемых в странах – членов СИГБ (Международная комиссия по большим плотинам – Society International grand barrage) на 1105 из них были отмечены аварии. Стоимость ремонта одной только арочной плотины Кельнбрайн в Австрии в 1985-1991 гг. составила 191 млн. долларов.

    На территории бывшего СССР эксплуатируется более 2500 водохранилищ объёмом более 1 млн. куб. м. Проблема обеспечения безопасности плотин, как показали аварии Киселёвской и Тирлянской плотин в 1993-1994 гг., весьма актуальна.

    Из 36,2 тыс. существующих высоких плотин, эксплуатируемых в настоящее время, 6,3 тыс. являются бетонными или каменными, 29,9 тыс. – грунтовыми. Из указанных выше 1105 аварий число аварий бетонных плотин составляет – 380, грунтовых – 664. Анализ отказов показывает, что надёжность этих типов сооружений различна и зависит от безотказной работы отдельных подсистем. Для грунтовых плотин наибольшее число отказов связано с фильтрационными проблемами в теле и основании плотины при чрезвычайных паводках. Для бетонных плотин отказы вызваны преимущественно проблемами оснований. Расчётные нагрузки на плотины этого типа также различны.

    Поскольку статистика отказов представляет интерес не только с целью оценки значимости отдельных факторов, но и для установления физических причин разрушений и повреждений, рассмотрим надёжность одного из указанных типов плотин – бетонных на скальных основаниях. Для ответа на вопрос, вызвано ли большинство аварий плотин чрезвычайными внешними воздействиями, не учтёнными при проектировании сооружения, или недооценкой его свойств под нагрузкой, рассмотрим взаимодействие подсистем «плотина» и «основание» в системе «сооружение – внешняя среда» (рис. 1.4.3) при отказах. Такое изучение может заключаться в анализе данных нормально эксплуатируемых сооружений или сооружений, претерпевших аварию.

    В настоящей статье оценка надёжности выполнена по данным сооружений, претерпевших аварию. Причины двух форм аварии – разрушения или повреждения определяются с позиции возможного внешнего воздействия f (L) или недостаточной сопротивляемости подсистемы «плотина» или «основание» f(R) (рис. 1.4.4). При этом отказы будут иметь место в случае L > R (заштрихованная область на рис. 1.4.4). Кроме того, не следует забывать, что сооружения стареют, а требования к их надёжности (безопасности) – повышаются. Аварии техногенных систем – всегда ошибка специалиста вне зависимости от того, вызвана ли она недооценкой внешней нагрузки или недостаточной сопротивляемостью, допущенная в период изысканий, проектирования, строительства или эксплуатации.

    Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.