МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Реферат: Физические основы электроники

    3.4  Линейная (малосигнальная) модель биполярного транзистора

    В качестве малосигнальных моделей могут быть использованы эквивалентные схемы с дифференциальными h-, у- и z-параметрами, которые имеют формальный харак­тер и в которых отсутствуют непосредственная свя­зь с физической структурой транзистора.  Например, эквивалентная схема для системы Н-параметров приведена на рисунке 3.9.

     

    Рисунок 3.9 Эквивалентна схема БТ в системе Н-параметров.

    Широкое распространение нашли эквивалентные схемы с так называемыми физи­ческими параметрами, которые опираются на нелинейную дина­мическую модель Эберса - Молла, т.е. тесно связаны с физичес­кой структурой биполярного транзистора.

    Малосигнальную схему БТ легко получить из нелинейной ди­намической модели заменой эмиттерного и коллекторного диодов их дифференциальными сопротивлениями, устанавливающими связь между малыми приращениями напряжения и тока. Кроме то­го, в усилительных схемах используется либо нормальный актив­ный, либо инверсный активный режим, а режим насыщения недо­пустим. Поэтому при переходе к малосигнальной схеме можно ог­раничиться рассмотрением наиболее распространенного нор­мального активного режима, так как результаты легко перенести и на инверсный активный режим. В этом случае можно исключить генератор тока и малосигнальную модель БТ для схемы включе­ния с ОБ можно изобразить, как на рисунке 3.10.

    Рисунок 3.10 Эквивалентная схема БТ при включении его с ОБ.

    Поясним смысл элементов модели. Резистор RЭ представляет дифференциальное сопротивление эмиттерного перехода. В пер­вом приближении его можно определить по формуле для идеализи­рованного р-n перехода:

    RЭ=dU/dI»jT/IЭ,  (3.28)

    где IЭ- постоянная составляющая тока эмиттера. Так как при ком­натной температуре jт = 0,026 В, то при IЭ = 1 мА  RЭ = 26 Ом.

    Величина RК называется дифференциальным сопротивлением коллекторного перехода. Оно обусловлено эффектом Эрли и мо­жет быть определено по наклону выходной характеристики:

      .    (3.29)

    Величина RК обратно пропорциональна значению парамет­ра h22Б. Дифференциальное сопротивление коллектора может составлять сотни килоом и мегаомы, тем не менее его следует учитывать.

    Реактивные элементы модели (Сэ, Ск) оказались теперь присое­диненными параллельно резисторам RЭ и RК. Сопротивление базы r½ББ, которое может превышать сотни ом, все­гда остается в модели.

     r½ББ=h12/h22 .            (3.30)              

    Приведенная эквивалентная малосигнальная модель БТ формально относится к схеме включения с ОБ. Однако она при­менима и для схемы с ОЭ. Для этого достаточно поменять мес­тами плечи этой схемы, называемой Т-образной схемой с фи­зическими параметрами. Электрод “Б” следует изобразить входным, а “Э” - общим, как показано на рисунке 3.11.

                   Рисунок 3.11 Эквивалентная схема БТ при включении его с ОЭ.

    Значения всех элементов остаются прежними. Однако при таком изобра­жении появляется некоторое неудобство, связанное с тем, что зависимый генератор тока в коллекторной цепи выражается не через входной ток (ток базы). Этот недостаток легко устранить преобразованием схемы к виду, изображенному на рисунке 3.11. Чтобы обе схемы были равноценными четырехполюсниками, они должны иметь одинаковые параметры в режимах холо­стого хода и короткого замыкания. Это требует перехода от тока H21БIЭ к току Н21ЭIБ и замены RК  и CК на RК* и CК* соответственно. Связи этих величин определяются формулами

    RК*=Н21БRК/ Н21Э=RК /( Н21Э+1) ,          ( 3.31 )                                        

    СК*= СК( Н21Э+1) .                                  ( 3.32 )

    Легко убедиться, что RК* характеризует наклон выходной характери­стики (эффект Эрли) в схеме с ОЭ и связан с выходной проводимо­стью в этой схеме соотношением (5.43). Во сколько раз уменьшает­ся RК* по сравнению с RК, во столько же раз возрастает емкость СK* по сравнению с СK,  т.е. RKCK =RK*CK*. ]

    3.5 Частотные свойства биполярного транзистора

    Частотные свойства определяют диапазон частот синусоидаль­ного сигнала, в пределах которого прибор может выполнять харак­терную для него функцию преобразования сигнала. Принято частот­ные свойства приборов характеризовать зависимостью величин его параметров от частоты. Для биполярных транзисторов использует­ся зависимость от частоты коэффициента передачи входного тока в схе­мах ОБ и ОЭ Н21Б и Н21Э. Обычно рассматривается нормальный активный режим при малых амплитудах сигнала в схемах включения с ОБ и ОЭ.

    В динамическом режиме вместо приращения токов необходимо брать комплексные амплитуды, поэтому и коэффициенты передачи заменяются комплексными (частотно зависимыми) величинами: Н21Б и Н21Э.

    Величины Н21Б и Н21Э могут быть найдены двумя способами:

    -решением дифференциальных уравнений физических про­цессов и определением из них токов;

    -анализом Т-образной эквивалентной схемы по законам теории электрических цепей.

    Во втором случае Н21Б и Н21Э будут выражены через величины элек­трических элементов схемы. Мы проведем анализ частотных свойств коэффициентов передачи, используя Т-образную линейную модель (эквивалентную схему) n-р-n транзистора (рисунки 3.10 и 3.11).

    На частотные свойства БТ влияют СЭ, СК и r½ББ, а также время пролета носителей через базу tБ.

    Нет надобности рассматривать влияние на частотные свойства транзистора каждого элемента в отдельности. Совместно все эти факторы влияют на коэффициент передачи тока эмиттера Н21Б, который становится комплексным, следующим образом:

      ,        (3.33  )

    где Н21Б0- коэффициент передачи тока эмиттера на низкой частоте, f - текущая частота,   fН21Б- предельная частота.

    Модуль коэффициента передачи тока эмиттера равен:

        ( 3.34 ).

    Не трудно заметить, что модуль коэффициента передачи ½Н21Б½на предельной частоте fН21Б снижается в  раз.

             Сдвиг по фазе между входным и выходным токами определяется формулой

    .       ( 3.35 )

             Для схемы с ОЭ известно соотношение

    ( 3.36 ).

    Подставляя (3.33)  в  (3.36)  получим

         (3.37),

    где      .

    Модуль коэффициента передачи тока базы будет равен

       (3.38).

             Как видно,  частотные свойства БТ в схеме ОЭ значительно уступают транзистору, включенному по схеме с ОБ.

    Граничная частота fГР - это такая частота, на которой модуль коэффициента передачи ½Н21Э½=1. Из (3.38) получим, что fГР»fН21Э×Н21Э0.

    Транзистор можно использовать в качестве генератора или усилителя только в том случае, если его коэффициент усиления по мощности  КP>1. Поэтому обобщающим частотным параметром является максимальная частота генерирования или максимальная частота усиления по мощности, на которой коэффициент усиления по мощности равен единице. Связь этой частоты с высокочастотными параметрами определяется выражением

       ,    ( 3.39 ).

    где   fН21Б-предельная частота в мегагерцах; r1ББ-объемное сопротивление в омах; CК-емкость коллекторного перехода в пикофарадах; fМАКС-в мегагерцах.

    3.6 Способы улучшения частотных свойств биполярных транзисторов

    Рассмотренное выше позволяет сделать следующие выводы. Для улучшения частотных свойств (повышение предельной частоты ) рекомендуется следующее.

    1. Уменьшать время пролета инжектированных носителей в ба­зовой области, т.е.

    а) уменьшать ширину базовой области WБ;

    б) создавать n-р-n транзисторы, так как подвижность электронов выше, чем у дырок, примерно в 2 раза;

    в) использовать германиевые БТ, так как в германии подвиж­ность носителей выше. Еще большие возможности открывает ис­пользование арсенида галлия.

    2.   Создавать ускоряющее поле в базовой области для инжекти­рованных из эмиттера носителей. Последнее возникает при нерав­номерном распределении примесей в базе по направлению от эмит­тера к коллектору (рисунок 3.12). Концентрацию около эмиттера дела­ют примерно в 100 раз больше, чем около коллектора.

    Рисунок 3.12 К образованию электрического поля в базе дрейфого БТ.

    Появление поля объясняется просто. Так как концентрация основных носителей в любой точке базы (дырок n-р-n транзистора) приблизительно равна концентрации примесей в этой точке, то распределение примесей Na(х) одновременно будет и распре­делением дырок p(х). Под влиянием градиента концентрации ды­рок будет происходить их диффузионное движение к коллектору, приводящее к нарушению условия электрической нейтрально­сти: около эмиттера будет избыток отрицательного заряда ионов акцепторов, а около коллектора - избыток положительного заря­да дырок, которые приходят к коллекторному переходу, но не проходят через него.

    Нарушение электрической нейтральности приводит к появле­нию внутреннего электрического поля в базовой области (минус у эмиттера, плюс у коллектора). Появляющееся поле, в свою оче­редь, вызовет встречное дрейфовое движение дырок. Нарастание поля и дрейфового потока будет происходить до того момента, ког­да дрейфовый и диффузионный токи дырок уравняются. Легко ви­деть, что установившееся (равновесное) значение поля будет уско­ряющим для электронов, которые входят в рабочем режиме из эмиттера в базу и будут уменьшать их время пролета, т.е. повы­шать предельную частоту БТ.

    Биполярные транзисторы с неравномерным распределением примесей в базе, приводящим к появлению ускоряющего поля, называются дрейфовыми, а обычные - бездрейфовыми. Практи­чески все современные высокочастотные и сверхвысокочастот­ные БТ являются дрейфовыми.

    Уменьшение времени пролета в базовой области n-р-n транзистора при

    экспоненциальном законе убывания концентрации акцепторов от Nа(0) до Nа(WБ) учитывается коэффициентом не­однородности базы:

    h=0,5ln[NА(0)/NА(WБ)]

     Поэтому [см. (5.93)] можно написать

    Для бездрейфовых транзисторовh=0  , а типичные значения для дрейфовых транзисторов .

    3. Уменьшать барьерные емкости эмиттерного и коллекторного переходов путем уменьшения сечения областей транзистора и уве­личения ширины переходов (выбором концентрации примесей и ра­бочего напряжения).

    4. Уменьшать омическое сопротивление областей базы r½ББ.

    5. Уменьшать время пролета носителей в области коллекторно­го перехода.

    Следует отметить, что ряд требований несовместимы и не­обходимо при создании транзисторов применять компромисс­ные решения.

    3.7 Работа транзистора в усилительном режиме

    При работе  транзистора в различных радиотехнических устройствах в его входную цепь поступают сигналы, например переменные напряжения. Под действием входного переменного напряжения изменяются входной  и выходной токи транзистора.

    Для выделения полезного сигнала в выходную цепь транзистора включают элементы нагрузки. В простейшем случае  нагрузкой может служить резистор Rк. На резисторе  нагрузки за счет прохождения  выходного тока выделяется, кроме постоянного, переменное напряжение. Амплитуда этого напряжения зависит от амплитуды переменной составляющей выходного тока и сопротивления резистора Rк   и может быть больше входного напряжения. Процесс усиления сигнала удобно рассмотреть на примере простейших усилителей.

    Простейшая схема усилителя на транзисторе, включенном по схеме с ОЭ, показана на рисунке 3.13.

    Коллекторная цепь состоит из резистора Rк и источника Ек, а цепь базы - из источников тока IБ0 и IБm Источник IБ0 обеспечивает положение исходной рабочей точке на участке характеристик с наименьшей нелинейностью. Источник IБm- источник сигнала. В качестве выходного используется переменное напряжение, выделяемое на резисторе нагрузки Rк (на коллекторе транзистора).

    Рисунок 3.13 Схема усилителя на БТ.

    Работа такого усилителя поясняется временными диаграммами токов и напряжений, изображенными на рис. 3..

    При IБm =0 токи базы и коллектора будут определяться токами в рабочей точке (IБ 0, IК 0)и напряжением на коллекторе UК0= ЕК-IК 0 × Rк

    Рисунок 3.14 Временные диаграммы усилителя.

    Во время положительного полупериода  входного тока (рис. 3.14, а) прямое напряжение эмиттерного перехода увеличивается, что вызывает рост тока коллектора (рис. 3.14, б) и уменьшение напряжения UКЭ за счет увеличения падения напряжения на сопротивлении коллектора (рисунок 3.14, в). Если работа происходит на линейных участках характеристик транзистора, то формы переменных составляющих токов базы и коллектора совпадают с формой входного напряжения, а переменное напряжение на коллекторе, обусловленной переменной составляющей коллекторного тока, оказывается сдвинутым относительно входного напряжения на 1800. При соответствующем выборе сопротивления нагрузки Rк амплитуда переменного  напряжения на выходе такого усилителя Umвых=IКmRк может значительно превышать амплитуду входного напряжения. В этом случае происходит усиление сигнала. Расчет параметров усиления дан в [4].

    3.8 ОСОБЕННОСТИ РАБОТЫ ТРАНЗИСТОРА В ИМПУЛЬСНОМ РЕЖИМЕ

    3.8.1 Работа транзистора в режиме усиления импульсов малой амплитуды

    Если транзистор работает в режиме усиления импульс­ных сигналов малой амплитуды, то такой режим работы в принципе не отличается от линейного усиления малых синусоидальных сигналов. Импульс в этом случае может быть представлен в виде суммы ряда гармонических состав­ляющих. Зная частотные свойства транзистора, можно опре­делить искажения формы импульсов, возникающие при усилении.

    Схема импульсного усилителя не отличается от схемы усилителя гармонических сигналов (рисунок 3.13).

    3.8.2 Работа транзистора в режиме переключения

    Биполярный транзистор широко используется в электронных устройствах в качестве ключа - функцией которого является замыкание и размыкание электрической цепи. Имея малое сопротивление во включенном состоянии и большое - в выключенном, биполярный транзистор достаточно полно удовлетворяет требованиям, предъявляемым к ключевым элементам.

    Схема транзисторного ключа показана на рисунке 3.15. Во входной цепи действуют источник смещения ЕБЭ, создающий обратное напряжение на эмиттерном переходе, источник управляющих импульсов прямого напряжения UВХ и ограничительный резистор RБ. Обычно RБ>>Н11Э. В выходной цепи включены сопротивление нагрузки RК и источник питания ЕКЭ.

                     Рисунок 3.15 Схема импульсного усилителя.

    Когда нет импульса на входе, транзистор находится в режиме отсечки и ток коллектора практически отсутствует IК»IКБ0 (точка А на выходных характеристиках (рисунок 3.16,б). Напряжение на выходе транзистора uКЭ= ЕКЭ-IК× RК » ЕКЭ.

    При подаче на вход транзистора импульсов прямого тока

    iБ=(UВХ- EБЭ)/RБ=IБ НАС, транзистор открывается, рабочая точка перемещается в точку Б (режим насыщения) и напряжение на коллекторе падает до значения uКЭ= ЕКЭ-IК НАС× RК=UКЭ ОСТ. При дальнейшем увеличении тока базы ток коллектора не увеличивается (рисунок 3.16,а).и напряжение на коллекторе не изменяется (рисунок 3.16,б).

    а) б)
    Рисунок 3.16 Зависимость входных (а) и выходных (б) токов БТ.

    3.8.3 Переходные процессы при переключении транзистора

             При практическом использовании транзистора большое значение имеет скорость переключения, обуславливающая быстродействие аппаратуры. Скорость переключения определяется процессами накопления и рассасывания неравновесного заряда в базе и коллекторе транзистора, эмиттерном и коллекторном переходах.

    В эмиттерном и коллекторном переходах находятся нескомпенсированные заряды  неподвижных ионизированных атомов примеси- доноров и акцепторов; неравновесный заряд отсечки в базе можно считать равным нулю.

    При переходе к режиму насыщения эмиттерный переход открывается, толщина перехода и его нескомпенсированный заряд уменьшаются, происходит как бы разряд ёмкости эмиттерного перехода. Вследсвии понижения напряжения на коллекторе, уменьшается его толщина и заряд в нем, т.е. происходит разряд ёмкости коллекторного перехода, открывается коллекторный переход и в области базы за счет инжекции электронов из эмиттерного и коллекторного переходах накапливается большой неравновесный заряд насыщения. В транзисторах, имеющих высокоомный коллектор носители заряда инжектируют и  в область коллектора, где так же накапливается неравновесный заряд.

    Графики напряжений и токов транзистора при переключении даны на рисунке 3.17. На базу транзистора подается прямоугольный импульс напряжения UВХ-EБЭ (рисунок 3.17,а).

             График входного тока показан на рисунке 3.17,б. Величина импульса прямого тока базы IБ ПР определяется в основном сопротивлением ограничительного резистора RБ.

             После переключения эмиттерного перехода на обратное направление ток перехода, как и в диоде, имеет первоначально большую величину, ограниченную лишь сопротивлением RБ: IБ ОБР= EБ/ RБ, так как сопротивление эмиттерного перехода в первый момент после переключения очень мало вследствие насыщения базы неравновесными носителями заряда (рисунок 3.17,г).

             При прямоугольной форме импульса входного тока импульс выходного тока iК (рисунок 3.17,в) появляется с задержкой tЗ, которая определяется главным образом скоростью нарастания напряжения эмиттерного перехода, зависящей от величин ёмкости перехода и прямого тока базы, т.е. скоростью разряда эмиттерного перехода.

    После того как транзистор перейдет из режима отсечки в активный режим, коллекторный ток начинает постепенно нарастать, достигая установившегося значения а время tн. Это время определяется скоростью накопления неравновесного заряда в базе и скоростью разряда емкости коллектора. Таким образом, полное время включения транзистора состоит

    Рисунок 3.17 Переходные процессы при переключении БТ.

    из времени задержки и времени нарастания:  .

             Практически оно может иметь величину от нескольких наносекунд до нескольких микросекунд в зависимости от параметров транзистора.

             После подачи в цепь базы запирающего тока IБ ОБР=EБЭ/RБ  выходной коллекторный ток прекращается не сразу. На протяжении некоторого времени рассасывания  tp  он практически сохраняет свою величину, так как концентрация носителей заряда в базе у коллекторного перехода еще остается выше равновесной и коллекторный переход благодаря этому оказывается открытым.

    Лишь после того как неравновесный заряд у коллекторного перехода рассосется за счет ухода электронов из базы и рекомбинации, ток коллектора начинает постепенно спадать, достигая время спада tС установившегося  значения IKЭ0. В течении этого времени продолжается рассасывание неравновесного заряда базы и происходит перезаряд емкости коллекторного перехода. Заметим, что эмиттерный переход при этом может закрыться  раньше или позже  коллекторного в зависимости от скорости рассасывания неравновесного заряда, сосредоточенного поблизости от него.

     Процесс накопления и рассасывания неравновесного заряда qБ при  переключении  транзистора поясняется  на рисунке 3.17,г. Накопление неравновесного заряда в базе начинается  спустя время задержки tз, и заряд за время нарастания tн достигает  установившегося значения qБ=Qакт. Далее вследствие падения коллекторного напряжения до величины UКЭ ОСТ< UБЭ коллекторный переход открывается и начинает инжектировать неравновесные носители заряда в базу. Заряд базы  снова возрастает, достигая к концу входного импульса значения qБ=Qнас. После переключения напряжения эмиттерного перехода на обратное происходит рассасывание  неравновесного заряда базы, за время tР+tС  он достигает  нулевого значения.


    4 ПОЛЕВЫЕ ТРАНЗИСТОРЫ

    4.1 Полевой транзистор с p-n переходом.

             В полевых тран­зисторах, управление потоком основных носителей заряда осуществляется в области полупроводника, назы­ваемой каналом, путем изменения его поперечного сечения с помощью электрического поля.  Полевой транзистор имеет следующие три электрода: исток, через который в n канал втекают ос­новные  носители; сток, через который они вытекают из канала, и затвор, предназначенный для регулирования поперечного сечения канала. В настоящее время существует множество типов полевых транзисторов, которые в ряде устройств работают более эффективно, чем биполярные. Преимуществом полевых транзисторов является также и то, что ассортимент

    полупроводниковых материалов для их изготовления значительно шире (так как они работают только с основными носителями заряда),        благодаря чему возможно создание, например, темпера -туростойких приборов. Большое значение также имеют низкий уровень шумов и высокое входное сопротивление этих транзисторов. На рисунке 4.1 приведена схема включения полевого транзистора.

     Во входную цепь включен источник обратного смещения UЗИ на p-n переходе между затвором и каналом. Выходная цепь состоит из источника постоянного напряжения UСИ плюсом соединенного к стоку. Исток является общей точкой схемы. Контакты истока и стока невыпрямляющие. Канал может иметь электропроводимость, как p-типа, так и n-типа; поскольку mn>mp   выгоднее применять n-канал. Затвор выполняют в виде полупроводниковой области p+-типа.

    Полевой транзистор работает следующим образом. При отсут­-

    Рисунок 4.1 ПТ с управляющим p-n переходом.

    ствии напряжения на входе основные носители заряда - электроны под действием ускоряющего электрического ноля в канале (E = 105Q104 В/см) дрейфуют в направлении от истока к стоку, в то время как p-n переход для них заперт. Ток IС, создаваемый этими электро­нами, определяется как напряжением стока UСИ, так и сопротивле­нием канала. Последнее зависит от поперечного сечения канала, которое ограничивается p-n переходом (заштрихованная область). Поскольку потенциал электрического поля линейно возрастает от истока к стоку вдоль кана­ла, толщина p-n перехода минимальна вблизи истока и максималь­на вблизи стока, и канал сужается вдоль  p-n перехода от стока к истоку. Таким образом, наибольшим сопротивлением канал обла­дает в наиболее узкой своей части.

    Если в результате подачи к затвору переменного напряжения сигнала результирующее обратное напряжение на затворе UЗИ повысятся, то толщина p-n перехода по всей его длине увеличится, а площадь сечения канала и, следователь­но, ток в цепи стока уменьшаются. На рисунке 4.2,а изображена характеристика

    а) б)
    Рисунок 4.2 Характеристики прямой передачи (а) и выходные (б) ПТ с управляющим p-n переходом.

    прямой передачи IС =f(UЗИ). Указанный эффект будет тем сильнее, чем больше удельное сопротивление материала полупроводника, поэтому полевые транзисторы выполняют из высокоомного материала. При больших обратных напряжениях на затворе UЗИ0 сечение канала в его узкой части станет равным нулю и ток через канал прекратится. Такой режим называется режимом отсечки. Характеристика прямой передачи хорошо описывается формулой

            (3.40)

    Па рисунке 4.2,б изображено семейство статических выходных характеристик IС =f(UСИ) при различных значениях напряжения затвора  UЗИ. Каждая характеристика имеет два участка - омический (для малых UСИ) и насыщения (для больших UСИ). При UЗИ = 0 с увеличением напряже­ния UС ток IС вначале нарастает почти линейно, однако далее характеристика перестает подчиняться закону Ома; ток IС начинает расти медленно, ибо его увеличение приводит к повышению падения напряжения в канале и потенциала вдоль канала. Вследствие этого увеличиваются толщина запирающего слоя и сопротивление канала, а также замедляется возрастание самого тока IС. При напряжении насыщения UСИ = UЗИ0 сечение канала приближается к нулю и рост IС прекращается.

    Следующая характеристика, снятая при некотором обратном напряжении затвора U^ЗИ, когда запирающий слой имеет большую толщину при тех же значениях UСИ, будет более пологой на начальном участке и насыщение наступит раньше (при меньших значениях U^СИ=UЗИ0 -U^ЗИ).

    Температурная зависимость тока истока связана с изменением подвижности основных носителей, заряда в материале канала. Для кремниевых транзисторов крутизна S уменьшается с увеличе­нием температуры. Кроме того, с повышением температуры увели­чивается собственная проводимость полупроводника, возрастает входной ток IЗ черед переход и, следовательно, уменьшается RВХ. У полевых кремниевых транзисторов с p-n переходом при комнатной температуре ток затвора порядка 1 нА. При увеличении температуры ток удваивается на каждые 10°С.

    Особенность полевых транзисторов заключается в наличии у них термостабильной точки, т. е. точки, в которой ток стока прак­тически постоянен при различных температурах (рисунок 4.3). Это объясняется следующим образом.

    При повышении температуры из-за уменьшения подвижности носителе удельная проводимость канала уменьшается, а следовательно, уменьшается и ток стока. Одновременно сокращается ширина p-n перехода, расширяется проводящая часть канала и увеличивается ток. Первое сказывается при больших токах стока, второе при малых. Эти два противоположных процесса при определенном выборе рабочей точки мо­гут взаимно компенсироваться. При правильном выборе ее положения основной

    Рисунок 4.3 Зависимость характеристик прямой передачи от температуры.

    причиной дрейфа тока стока может быть высокоомный резистор в цепи в зависимости от температуры будет из­меняться падение   напряжения по входной цепи,которое изменит рабочий ток стока.

    Основным параметрам, ис­пользуемым при расчете усилительного каскада с полевым транзистором, является статическая крутизна характеристики прямой передачи, т. е. отношение изменения тока стока к напряжению ме­жду затвором и истоком:

    Дифференциальное выходное сопротивление здесь опреде­ляется как

    , Ом, .

    Оно составляет, примерно десятки — сотни килоомов. Статиче­ский коэффициент усиления по напряжению m=DUСИ/DUЗИ =S'Ri .

    Определение параметров по характеристикам дано в [4].

    Междуэлектродные емкости затвор-исток СЗИ за­твор-сток СЗС и сток-исток ССИ. Для маломощных транзисторов СЗИ=3 пФ, СЗС=2 пФ и ССИ=0,2 пФ.

    Ток затвора во входной цепи триода IЗ —обратный ток, созда­ваемый неосновными носителями через p-n переход, чрезвычайна мал (порядка 10-9 А и менее). Поэтому входное сопротивление по­левого транзистора RВХ=DUЗ/DIЗ очень высокое (порядка несколь­ких мегомов), входная же емкость мала, так как переход нахо­дится под обратным напряжением. Этими качествами полевой транзистор выгодно отличается от биполярных транзисторов с дву­мя p-n переходами. При работе полевого транзистора на высоких частотах основное значение имеет емкость СЗИ. Максимальная ра­бочая частота определяется постоянной времени входной цепи f=1/2pRCЗИ, где R - сопротивление канала, через которое заря­жается емкость. Анализ показывает, что по частотным свойствам полевой транзистор не имеет особых преимуществ перед биполяр­ным. Практически были осуществлены полевые транзисторы с максимальной частотой генерации до 30 ГГц. Но с точки зрения бы­стродействия полевой транзистор превосходит биполярный, так как работает на основных носителях заряда при отсутствии их нако­пления.

    В импульсном режиме чрезвычайно полезным достоинством по­левого транзистора является почти полное отсутствие остаточного напряжения и цепи канала во включенном состоянии. Закрытый полевой транзистор оказывает сопротивление постоянному току между стоком и истоком более 108 Ом.

    Полевые транзисторы с p-n переходом целесообразно приме­нять во входных устройствах усилителей при работе от высокоомного источника сигнала, в чувствительной по току измерительной аппаратуре, импульсных схемах, регуляторах уровня сигнала и т. п.

    4.2 Полевой транзистор с изолированным затвором

     (МДП-транзистор).

    Этот транзистор имеет структуру металл - диэлектрик - полупроводник и может быть двух типов: с индуцированным каналом (рисунок 4.4,а) и с встроенным каналом (рисунок 4.4,б). Если осно­вой транзистора является кремний, то диэлектриком может быть слой окиси кремния, поэтому такую структуру иногда называют МОП-транзистор (металл - окисел - полу­проводник).

    а) б)

    Рисунок 4.4 Структура МДП ПТ с индуцированным (а)

    и  встроенным  (б)  каналами.

    Транзистор с индуцированным каналом имеет обла­сти истока n+ и стока n+, которые выведены путем металлизации че­рез отверстие в окиси кремния на контакты - исток и сток. На слой двуокиси окиси кремния напыляют слой алюминия, служащий затво­ром. Можно считать, что алюминиевый затвор и полупроводниковый материал p-типа образуют плоский конденсатор с окисным диэлектри­ком, Если на металлическую часть затвора подать положительное на­пряжение, то положительный заряд обкладки затвора индуцирует соответствующий отрицательный заряд в полупроводниковой области кана­ла. С возрастанием положительно­го напряжения этот заряд, созданный притянутыми из глубины p-области проводника электронами, которые являются неосновными носителями, превращает поверхност­ны слой полупроводника p-типа в проводящий канал n-типа, со­единяющий исходные n+-области истока и стока. Поэтому умень­шается сопротивление материала между истоком и стоком, что ве­дет к увеличению тока стока. Таким образом, благодаря электро­статической индукции между истоком и стоком происходит инверсия типа проводимости полупроводника. Слой полупроводника  p-типа превращается в полупроводник

    n-типа. До инверсии сопротивление между истоком и стоком определяется сопротивлением закрытого перехода, так как до инверсии имеет место структура n+-р-n+. После инверсии образуется n-проводимость и струк­тура становится n+-n-n+. Меняя напряжение на затворе, можно уп­равлять током стока. Если взять подложку n-типа, то можно построить МДП-транзистор с индуцированным p-каналом, который управляется отрицательным напряжением на затворе.

    Транзистор с встроенным каналом имеет конструкцию, подоб­ную предыдущей. Между истоком и стоком методом диффузии со­здают слаболегированный канал c проводимостью n--типа при проводимости подложки p-типа. Возможно другое сочетание. Канал имеет проводимость p-типа, а подложка — проводимость n-типа. В отсутствие напряже­ния на затворе (рис. 2.91б) ток между истоком и стоком опреде­ляется сопротивлением n--канала. При отрицательном напряжении на затворе концентрация носителей заряда и канале уменьшится и в нем появляется обедненный слой. Сопротивление между истоком и стоком увеличивается и ток уменьшается. При по­ложительном напряжении на затворе ток стока увеличивается, по­тому что в канале индуцируется дополнительный отрицательный заряд, увеличивающий его проводимость.

    На рисунке 4.4 приведены характеристики прямой передачи МДП-транзисторов с индуцированным (кривая 2) и встроенным (кривая 1)  каналами.

    Из рисунка

    видна квадратичность передаточной характеристики. Теоретически характеристика прямой передачи опи­сывается следующим выражением:

     при . ( 3.41 )

    Здесь А - постоянный коэффициент; UЗИ ПОР - напряжение, которое для транзистора с индуцированным каналом принято называть пороговым. Инверсия типа про­водимости начинается лишь при достижении напряжения UПОР.

    Рисунок 4.4 Характеристики прямой передачи МДП ПТ.

    Выходные характеристики МДП-транзистора с индуциро- ванным каналом n-типа приведены на рисунке 4.5,а со встроенным ка­налом - на рисунке 4.5,б.

    В области UCИ < |UЗИ - UЗИ ПОР | теоретический ток стока

    . ( 3.42 )

    Уравнение (3.42) описыва­ет восходящие ветви выход­ной характеристики Входное сопротивление МДП-транзистора из-за нали­чия изолятора между затвором и каналом составляет около 1012 - 1014 Ом и уменьшается с ростом частоты вследствие шунтирования входной емко­стью транзистора. Выходное сопротивление находится в пределах десятков - сотен килоомов. Входная и выходная емкости составляют единицы пикофарад, а проходная емкость -десятые доли пикофарад.

    а) б)
    Рисунок 4.5 Выходные характеристики ПТ с индуцированным  (а) и встроенным (б) каналами.

    Литература

    1 Электронные , квантовые приборы и микроэлектроника. Под редакцией Федорова Н.Д. - М.: Радио и связь, 1998.-560 с.

    2 Электронные приборы. Под редакцией Шишкина Г.Г. -М.: Энергоатомиздат, 1989.-496 с.

      3   Батушев В.А. Электронные приборы. -М.: Высшая школа, 1980. -383 с.

              4  Савиных В. Л.  Физические основы электроники. Методические указания и контрольные задания. СибГУТИ,  2002.


    ктн, доц. Валерий Леонидович Савиных,

    Физические основы электроники

    Учебное пособие

     

             Редактор доц.  Удальцов А.Н.

             Корректор Шкитина Д.С.

            

    Лицензия №020475, январь 1998 г. Подписано в печать

    Формат бумаги 62 х 84 1/16

    Бумага писчая №1. Уч. изд. л.      Тираж       экз.

    Заказ №

    СибГУТИ, 630102, г. Новосибирск, ул. Кирова, 86.

     [нет1]

     [нет2]


    Страницы: 1, 2, 3, 4, 5, 6, 7


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.