Разработка и исследование модели отражателя-модулятора (WinWord zip-1Mb)
напряжение и ток на входе антенны. Поскольку мы считаем закон распределения
тока и напряжения известным из теории длинных линий с потерями, то,
очевидно, что для расчёта входного сопротивления мы должны использовать ту
же самую теорию. Поэтому расчёт ведётся по известной формуле для длинной
линии с затуханием:
[pic]
где WВ – волновое сопротивление эквивалентной двухпроводной линии,
заменяющей собой вибратор;
l – длина эквивалентной линии, равная длине одного плеча вибратора;
( и ( - составляющие постоянной распространения в эквивалентной
линии;
Надо сказать, что эквивалентное волновое сопротивление вибратора WВ не
совпадает с волновым сопротивлением W линии, выполненной из тех же
проводов, что и вибратор. Известно, что волновое сопротивление линии с
распределёнными параметрами определяется отношением погонной индуктивности
и ёмкости (2.5) в предположении, что L1 и C1 постоянны на всём
рассматриваемом участке линии. Но в симметричном вибраторе погонные L1 и C1
изменяются вдоль провода, и их отношение не обязательно должно оставаться
постоянным. Поэтому при расчёте симметричного вибратора используется
некоторое эффективное (усреднённое) волновое сопротивление, обозначенное
через WВ. В силу того, что распределение L1 и C1 по вибратору зависит от
его длины, значение WВ также оказывается зависящим от длины вибратора и
равным:
[pic] (2.8)
где d – диаметр провода вибратора.
Постоянная распространения (=(-i( также определяется через эффективные
распределённые параметры по формулам, аналогичным (2.3)-(2.5):
где [pic]
Точность равенства (2.10) зависит от величины коэффициента затухания (
или точнее от отношения 2(/k.
В случае симметричного вибратора активные потери определяются
сопротивлением излучения, которое зависит только от длины вибратора, и в
свободном пространстве не может быть изменено, если электрическая длина
антенны фиксирована и мало меняется. Поэтому добротность эквивалентного
контура может быть изменена только за счёт характеристического
сопротивления, то есть за счёт реактивных элементов. Последние (2.5)
связаны непосредственно с волновым сопротивлением WВ и, следовательно, с
диаметром провода вибратора (2.8). Когда необходимо использовать
симметричный вибратор в широкой полосе частот и требуется плавное и по
возможности меньшее изменение ZВХ (малая добротность), прибегают к
вибраторам со значительным поперечным сечением провода. При этом провод
вибратора не обязательно должен быть круглым и сплошным, его можно
выполнить из полой трубы или плоской ленты или аналогичных сетчатых
металлических поверхностей.
3 Диаграмма направленности симметричного вибратора
Диаграмма направленности симметричного вибратора может быть получена с
помощью метода, имеющего большое значение в теории и технике антенн и
применяющегося для получения диаграмм направленности любых антенн. Метод
предполагает распределение комплексной амплитуды тока по антенне [pic]
известным.
[pic]
Рис.2.2. К выводу формулы поля симметричного вибратора.
В основе метода лежит принцип суперпозиции или наложения.
При выводе формулы диаграммы направленности антенна рассматривается
как совокупность элементарных излучателей, поля от которых надлежит
суммировать в текущей точке наблюдения, расположенной в дальней зоне на
сферической поверхности радиуса r.
Разберём указанный метод и выведем формулу для диаграммы
направленности симметричного вибратора.
На рис.2.2 показан тонкий вибратор с выделенными на нём двумя
симметрично расположенными диполями длинной dZ с координатами центров (Z.
Там же указана система координат для отсчёта положения точки наблюдения А и
координат диполей с током.
Поскольку точка наблюдения отнесена в дальнюю зону, то есть на
достаточно большое расстояние r0>>2l, то все лучи, направленные в точку
наблюдения от различных диполей, можно считать практически параллельными.
Это значит, что r0, r1 и r2 связаны между собой соотношениями:
r2-(r=r0=r1+(r,
(2.12)
где
(r=|Z|cos(.
Запишем поле от двух выбранных диполей, считая их достаточно тонкими
(диаметр провода значительно меньше длины волны):
[pic], (2.13)
Сравнивая поля от двух противоположных элементарных вибраторов, видим,
что они только отличаются значением множителя [pic], то есть амплитудами,
обратно пропорциональными расстояниями r(Z), и фазами, прямо
пропорциональными расстояниям:
(=k(r(z).
(2.14)
При условии r>>l отличие амплитуд будет настолько несущественным, что
с хорошей точностью модули полей от всех диполей можно определять через
одно и то же расстояние r0, соответствующее середине симметричного
вибратора.
Однако при оценке фазовых сдвигов полей с различием расстояний r1 и r2
нельзя не считаться.
С учётом принятых допущений поле от пары диполей записывается в виде:
[pic], (2.15)
Чтобы получить значение полного поля и диаграммы направленности
симметричного вибратора, необходимо просуммировать dE( от всех пар
симметрично расположенных диполей, составляющих оба провода антенны.
Сложение бесконечного числа элементарных полей осуществляется путём
интегрирования выражения (2.15) в пределах одного плеча вибратора.
Результирующее поле оказывается равным:
[pic]. (2.16)
В полученной формуле в квадратных скобках выделено произведение двух
множителей, зависящих от ( и представляет собой диаграмму направленности в
меридиональной плоскости F((). Каждому из множителей может быть приписан
определённый физический смысл.
Ниже приведены графики для F(() при различных отношениях [pic].
[pic]
Рис. 2.3. Диаграмма направленности при l/(=0,25.
[pic]
Рис. 2.4. Диаграмма направленности при l/(=0,5
[pic]
Рис. 2.5. Диаграмма направленности при l/(=0,75
4 Схема замещения нелинейного резистора
Нелинейный резистор - элемент электрической цепи, напряжение и ток в
котором связаны нелинейным законом. Для моделирования нелинейных резисторов
в радиотехнике используются несколько методов, например, замена его на
эквивалентный источник напряжения (тока), управляемого током (напряжением).
В нашем случае в качестве нелинейного резистора используется диод. Для
моделирования диода будем использовать зависимость тока диода от напряжения
i=f(U), приложенного к его концам, то есть, заменяем источником тока,
управляемым напряжением. Эту зависимость запишем аналитически в виде
i=I0(eaU, которая хорошо согласуется с экспериментальными данными. Кроме
того, диод обладает паразитной индуктивностью выводов и паразитной ёмкостью
корпуса. Паразитная ёмкость корпуса моделируется включением ёмкости
соответствующего номинала параллельно источнику тока, а паразитная
индуктивность включением эквивалентной индуктивности последовательно с ним.
5 Схема замещения нелинейной ёмкости
Нелинейная ёмкость – элемент, ёмкость которого зависит от приложенного
напряжения. В качестве нелинейной ёмкости берётся варикап. Поскольку
варикап является диодом и включается в обратном смещении то считается, что
его активное сопротивление равно бесконечности. Как и диод варикап обладает
паразитной ёмкостью корпуса и паразитной индуктивностью выводов, которые
моделируются аналогично паразитной ёмкости и индуктивности диода.
Получаем в качестве модели варикапа ёмкость, управляемую напряжением,
с параллельно и последовательно включёнными паразитной ёмкостью и
индуктивностью. Зависимость ёмкости от напряжения выражается следующей
функцией:
[pic]
где СВ.НОМ – ёмкость варикапа, приведённая в справочнике при
напряжении смещения ЕВ.НОМ;
(к – контактная разность потенциалов для кремниевого варикапа равна
0,65.
m – коэффициент степени (для сплавных m=0.5, для диффузионных
m=0.3)
СОСТАВЛЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ОТРАЖАТЕЛЯ – МОДУЛЯТОРА
Математическая модель отражателя - модулятора необходима для
моделирования этого устройства с помощью вычислительной техники.
Предполагается, что все элементы математической модели будут представлены
как совокупность элементарных пассивных элементов с постоянными или
переменными параметрами. Эта модель позволит анализировать параметры
отражателя – модулятора с помощью специальных программных продуктов,
предназначенных для расчёта электрических цепей и схем.
Основной задачей моделирования является создание схемного аналога
вибратора – антенны отражателя - модулятора, поскольку этот элемент
устройства имеет большой разброс параметров для различных частот, а нам
необходима общая модель для всего рабочего диапазона частот, который имеет
коэффициент перекрытия три и более. Поэтому, разработке модели именно
вибратора в данном разделе будет уделено особое внимание, поскольку задача
является далеко не тривиальной, кроме того аналогичной задачи не
рассматривалось ни в одной книге, просмотреной в ходе подготовке к
дипломной работе. Разработанный мною метод моделирования может с успехом
применяться для моделирования и других цепей, поскольку в ходе
моделирования был использован общий подход.
Как было сказано выше, нам необходимо рассмотреть два случая, когда в
закладке используется полупроводниковый диод и когда используется варикап.
Использование этих двух элементов в устройстве даёт различные цепи
согласования вибратора с самим модулятором. Ниже на рисунках представлены
три эквивалентные цепные схемы для двух этих случаев.
[pic]
Рис. 3.1. Эквивалентная схема отражателя - модулятора с использованием
диода.
где
Е1 – источник высокочастотных колебаний, навязанных зондирующим
сигналом;
ЕСМ – источник смещения (устанавливает рабочую точку диода);
UМОД – источник модулирующего напряжения;
Д1 – полупроводниковый диод;
ССОГЛ – ёмкость, компенсирующая реактивное сопротивление
вибратора;
LСОГЛ – блокировочная или согласующая индуктивность, блокирует
шунтирование высокочастотного сигнала через источник смещения и
модуляции, или компенсирует ёмкостную составляющую (назначение в
зависимости от схемы);
ZВХ(p) – эквивалентное сопротивление вибратора (его
эквивалентная схема как двухполюсника);
[pic]
Рис. 3.2. Эквивалентная схема отражателя - модулятора с использованием
варикапа (RСОГЛ параллельно Д1).
[pic]
Рис. 3.3. Эквивалентная схема отражателя - модулятора с использованием
варикапа (RСОГЛ последовательно Д1).
На рис 3.2 и рис.3.3 RСОГЛ нужно для введения активного сопротивления,
в полное сопротивление модулирующей части, это позволит согласовать
модулирующую часть с вибратором на частоте зондирующего сигнала (RСОГЛ
выбирают равной активной составляющей вибратора на частоте зондирующего
сигнала).
Видно, что единственным неизвестным квадратом в нашей схеме является
эквивалент вибратора, приступим к его разработке и моделированию.
1 Построение математической модели вибратора
Как было сказано выше, математическую модель вибратора будем
разрабатывать в виде электрической цепи. Поэтому сразу же накладывается
требование положительности и вещественности схемной функции (в нашем случае
входное сопротивление), которую мы будем строить для вибратора.
Вначале мы посмотрим на экспериментальные графики входного
сопротивления вибратора, исходя из которых, выведем основные свойства для
входного сопротивления вибратора. Далее, пользуясь теоретическими данными
для схемных функций электрических цепей, построим функцию входного
сопротивления вибратора, пользуясь этой функцией, проведём моделирование с
помощью ЭВМ. Кроме того, покажем некоторый эвристический метод синтеза RLC
– двухполюсников по известной схемной функции.
1 Анализ возможного вида схемной функции
Из курса «Теория радиотехнических сигналов и цепей» известно, что RLC
– двухполюсник имеет схемную функцию в виде рациональной дроби, степень
знаменателя и числителя которой отличаются, не более чем на единицу, иначе
импульсная характеристика цепи будет стремиться в бесконечность при
конечной мощности входного воздействия. Кроме того, функция входного
сопротивления или проводимости RLC – цепи имеет в числителе и знаменателе
все степени. В некоторых случаях, когда полное сопротивление в нуле
стремиться к нулю или бесконечности, может отсутствовать нулевая степень,
т.е. нулевой коэффициент равен нулю.
Ниже на рис. 3.4 приведены экспериментальные графики для входного
сопротивления вибратора [4]. На верхнем графике рисунка приведены
зависимости активной части входного сопротивления от отношения длины
вибратора к длине волны. Эта зависимость пропорциональна зависимости
сопротивления от частоты при постоянной длине вибратора (частота обратно
пропорциональна длине волны). На нижнем графике рисунка видим зависимость
реактивной части сопротивления от частоты. Заметим, что на нулевой частоте
((=() значение реактивной составляющей стремится в “минус” бесконечность,
значит, у нас в знаменателе полного сопротивления отсутствует нулевая
степень.
[pic]
Рис 3.4. Зависимость входного сопротивления симметричного вибратора от его
длины при различном волновом сопротивлении вибратора (см. главу 2.2):
кривая 1 – для WB1; кривая 2 – для WB2 , где WB1 > WB2 .
Видим, что первым на оси часто стоит последовательный резонанс, затем
параллельный и т.д., т.е. вибратор обладает таким свойством RLC – цепи, как
чередование нулей и полюсов. Понятие «полюс», в данном случае,
подразумевает наличие параллельного резонанса, хотя реактивная составляющая
и равна нулю на этой частоте (это связано с наличием потерь в вибраторе на
излучение). Так как вибратор обладает свойством чередования нулей и
полюсов, то мы можем записать схемную функцию RLC – цепи и, подбором
коэффициентов её полиномов числителя и знаменателя, добиться приближения её
параметров на частотах кратных частоте зондирующего сигнал к параметрам
вибратора.
В дипломной работе рассматривается работа вибратора до третей
гармоники зондирующего сигнала. По условию задачи, для частоты зондирующего
сигнала вибратор является полуволновым, т.е. на частоте зондирующего
сигнала работа вибратора аналогична работе последовательного контура,
отсюда работа вибратора на второй и третей гармонике облучающего сигнала
аналогична работе параллельного и последовательного контура соответственно.
Исходя из выше сказанного, делаем вывод, что наша схемная функция
имеет два «нуля» на комплексной плоскости (плюс ещё два из-за комплексной
сопряжённости, причём каждый нуль имеет вид: ((p-a)2+b2)), один «полюс» на
комплексной плоскости и один «полюс» в нуле. Под «полюсом» на комплексной
плоскости понимается наличие параллельного резонанса (системная функция в
этой точке имеет конечное значение), под «нулём» - наличие
последовательного резонанса.
Следовательно, требуемая схемная функция будет иметь в числителе
полином четвёртого порядка, а в знаменателе полином третьего порядка, у
которого будет отсутствовать свободный член.
2 Построение схемной функции
В предыдущем подразделе мы выяснили, какой вид должна иметь схемная
функция RLC – двухполюсника, имеющей два последовательных резонанса, один
параллельный, и в нуле эквивалентна ёмкости:
[pic], (3.1)
Получили восемь неизвестных коэффициентов, которые необходимо найти.
Кроме того, можно показать, что любой RLC – двухполюсник, не имеющий
перекрёстных связей, имеет функцию сопротивления или проводимости вида
(3.1), у которой коэффициенты a0=b0=1. Отсюда, имеем шесть неизвестных
коэффициентов, для нахождения которых нам потребуется шесть уравнений.
Предложим следующий вариант системы уравнений, из которой можно найти
коэффициенты (3.1).
Найдём активные и реактивные составляющие сопротивления (3.1) на трёх
гармониках и при равняем их составляющим сопротивления вибратора на этих же
гармониках. Получается, что мы провели кривую, заданную выражением (3.1),
через три точки полного сопротивления вибратора. Эти точки возьмём на
частотах кратных частоте облучающего сигнала. Таким образом, мы
гарантировано имеем те же значения сопротивления (3.1) на требуемых
Страницы: 1, 2, 3, 4
|