МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Реферат: Реверсная магнитная фокусирующая система мощного многолучевого клистрона

    В ГОСТ 12.003-74*ССБТ “Опасные и вредные факторы. Классификация.” элементы условий труда выступающих в роли опасных и вредных факторов делятся на: физические, химические, биологические, психофизические.

    К физическим факторам относятся:

    – недостаточная освещенность рабочего места;

    – возможность поражения электрическим током;

    – повышенный уровень шума на рабочем месте;

    – не оптимальные микроклиматические условия на рабочем месте;

    – повышенный уровень электромагнитных полей.

    4.2. Освещение рабочего места [9].

    Правильно спроектированное и выполненное освещение улучшает условия зрительной работы, снижает утомляемость, способствует повышению производительности труда, благотворно влияет на производственную среду, оказывая положительное психологическое воздействие на работающего, повышает безопасность труда и снижает травматизм.

    В процессе работы над настройкой мощного клистрона инженеру-настройщику приходится иметь дело с показаниями приборов. Данная работа относится к IV разряду. Контраст большой, фон средний, следовательно, подразряд "Г". Освещение должно быть общее и составлять не менее 150 лк. Кроме того, возможно комбинированное освещение с минимальной освещенностью 300 лк.

    Рассчитаем освещенность на рабочем месте. Плоскости столов расположены на расстоянии 0,75 м от уровня пола. Инженер-настройщик работает в комнате с окном, следовательно, на рабочее место проникает дневной свет. Однако, дневного освещения недостаточно, поэтому используется искусственное освещение.

    Для общего освещения помещения применяют люминесцентные лампы. При расчете общего равномерного освещения горизонтальных поверхностей при отсутствии крупных затемняющих предметов пользуются методом коэффициента использования.

    При расчете по этому методу потребный поток от лампы находится по формуле:

    Ф = Е k S z .
    N h

    Из данной формулы можно определить Е при известном Ф.

    Е = Ф N h
    k S z

    Где    Ф – поток излучения от каждого светильника,

    k – коэффициент запаса,

    S – освещаемая поверхность,

    z – неравномерность освещения,

    N – число светильников,

    h – коэффициент использования в долях единиц.

    В комнате освещение создается шестью двухламповыми светильниками ЛПП01 с лампами ЛБ-40.

    Нормальный световой поток каждой лампы составляет 3000 лм.

    Суммарный световой поток:

    Ф = 6 ´ 2 ´ 3000 = 36000 лм.

    Для определения коэффициента использования необходимо найти индекс помещения i:

    i = A ´ B ,
    h (A + B)

    где    А – длина помещения,

    В – ширина помещения,

    h – высота помещения.

    Имеем: А = 9 м, В = 5 м, h = 3,2 м, откуда i = 1,0.

    Для определения коэффициента использования необходимо также предположительно оценить коэффициенты отражения поверхностей помещения, которые составляют соответственно для потолка, стен и расчетной поверхности 70%, 30% и 10%.

    Светильники ЛПП01 относятся ко второй группе, поэтому потоки нижней и верхней полусфер будут равны соответственно 0,66 и 0,16. Коэффициент использования светового потока, излучаемого в нижнюю полусферу, равен – 0,50 и в верхнюю полусферу – 0,35. Тогда коэффициент использования равен: 0,50 ´ 0,66 + 0,35 ´ 0,16 = 0,38.

    В помещении с нормальной сферой при газоразрядных лампах коэффициент запаса k = 1,5.

    Коэффициент z, характеризующий неравномерность освещения, является функцией многих переменных и в наибольшей степени зависит от отношения расстояния между светильниками к расчетной высоте. При этом отношении, не превышающем рекомендуемых значений, можно принимать z = 1,1 для люминесцентных ламп при расположении светильников в виде светящихся линий. В нашем случае это отношение равно: 2,5/3,2 = 0,8, что не превышает рекомендуемого значения. Следовательно, примем z = 1,1. В помещениях, где положение работающего создает частичное затемнение, следует ввести коэффициент затемнения. Этот коэффициент равен 0,8.

    Зная все необходимые данные, подсчитаем освещенность:

    Е = 6000 ´ 6 ´ 0,38 ´ 0,8 = 147 лк.
    1,5 ´ 45 ´ 1,1

    Полученное значение меньше 150 лк, значит, освещение ниже санитарных норм.

    Таким образом, в результате данного расчета выявилась необходимость улучшения освещенности рабочего места инженера-настройщика. Для этой цели было проведено следующее мероприятие: установка настольных ламп на рабочих местах. После установки ламп освещенность стала соответствовать уровню санитарных норм.

    4.3. Опасность поражения электрическим током [10].

    Значительная доля травм при работе на стендах динамических испытаний, на которых производится настройка приборов СВЧ, возникает в результате прикосновений человека к элементам электроустановок, на которые подается напряжение в процессе нормальной эксплуатации.

    Все приборы, которые находятся на стенде, имеют металлический корпус. При прикосновении к токоведущим частям, находящимся под напряжением, при нарушении изоляции, напряжение может появиться на данной конструкции. При прикосновении к ней человека может произойти замыкание, то есть прохождение тока через тело человека. При длительном воздействии (20 сек и более) электрический удар способен привести к остановке дыхания и фибрилляции сердца, влекущие за собой смерть, если пострадавшему не будет оказана своевременная помощь.

    Существующие в настоящее время устройства защиты человека от поражения электрическим током осуществляют следующие функции:

    1. Не допускают прикосновений человека к элементам находящимся под напряжением.

    2. Осуществляют защиту человека при прикосновениях к элементам, находящимся под напряжением.

    3. Препятствуют попаданию напряжения на нетоковедущие элементы электроустановок.

    4. Защищают человека при прикосновениях к элементам оборудования, оказавшимся под напряжением в результате нарушения нормального режима работы электроустановок (замыканий на корпус, на землю и т.д.).

    К защитным устройствам, обеспечивающим недоступность элементов, находящихся под напряжением относятся различного рода ограждения, блокировки, сигнализация, размещение токоведущих элементов на недоступной высоте и индивидуальные средства защиты.

    Электрическая изоляция осуществляет все виды защиты и является наиболее универсальным защитным средством, применяющимся во всех без исключения электроустановках. Применение пониженного напряжения, безопасного для человека, может обеспечить, полную электробезопасность. Заземление элементов электрооборудования, нормально изолированных от напряжения получило широкое распространение, особенно в электроустановках выше 1000 В. Защитным отключением принято называть систему защиты, обеспечивающую автоматическое отключение всех фаз аварийного участка сети с полным временем отключения, обеспечивающим безопасность. Защитное отключение может осуществлять защиту при однофазных замыканиях и защиту при прикосновениях к элементам под напряжением, что повышает ценность такой защиты.

    Для защиты от высокого напряжения стенд подключен к общецеховой защите занулением с автоматическими выключателями серии А-3110 с нерегулируемыми расщепителями на номинальный ток 100 А.

    4.4. Меры защиты от СВЧ – излучения.

    Основным же вредным фактором, влияющим на человека при работе на стендах, является электромагнитное излучение сверхвысокой частоты. Электромагнитное поле высокой мощности и частоты вредно для человека и поэтому необходимо оценить его напряженность вблизи места, где работают люди. Утечки электромагнитного излучения могут происходить через конструктивные щели волноводов, через диэлектрики, имеющиеся в конструкции, а также через окно вывода энергии.

    Высокочастотное излучение воздействует на организм человека и может изменять условно-рефлекторную деятельность, кровяное давление, пульс и дыхание. При частых облучениях происходят стойкие функциональные изменения в центральной нервной и сердечно-сосудистой системах. Степень воздействия СВЧ поля на организм человека зависит от интенсивности облучения, его длительности и частоты источника.

    Одним из наиболее важных биофизических аспектов защиты от электромагнитных полей является выбор критерия интенсивностей электромагнитных полей, потенциально опасных для человека, и формы их представления так, например нормирования. В качестве нормированных параметров электромагнитных полей в диапазоне f > 300 мГц нормируется плотность потока мощности. В диапазоне СВЧ ближняя зона (зона индукции) расположена в непосредственной близости у излучателя, и рабочие места попадают в дальнюю зону (зону дифракции).

    В общем случае – границей между промежуточной и дальней зоной является величина: R = l / 2p.

    Для прибора, работающего в сантиметровом диапазоне волн, интенсивность облучения на рабочих местах регламентируется в единицах энергетической нагрузки. Для приборов со скважностью менее 50, к которым относится наш клистрон, нормированное значение допустимой энергетической нагрузки на организм:

    W дoп = 2 Вт час / кв.м.

    Рассчитаем предельно допустимую плотность потока мощности:

    ППМ доп = W дoп / Т,

    где    Т – время пребывания в зоне облучения [час].

    На стенде работы ведутся полный рабочий день – 8 часов, поэтому: ППМ доп = 0,25 Вт / кв.м.

    Основными источниками СВЧ излучения в клистроне являются:

    – зазор между коллектором и электродинамической системой,

    – щели и места слабого уплотнения элементов СВЧ тракта.

    Утечки СВЧ излучения через диэлектрики, входящие в конструкцию прибора, предотвращаются стальными экранами, предусмотренными конструкцией. Если они все же отсутствуют, то их уровень много меньше уровня излучения из зазоров и щелей.

    Величины зазоров не превышают 1 мм. При длине волны 100 мм рабочее место находится в дальней зоне – зоне дифракции. В этой зоне векторы электрического и магнитного полей колеблются в фазе. А электромагнитное поле сформировано в виде волн накладывающихся друг на друга и образующих дифракционные максимумы и стоячие волны. На практике эффективность воздействия поля в дальней зоне оценивается по плотности потока мощности излучения, проходящей за секунду через единицу поверхности, перпендикулярной направлению распространения волны. Максимальное значение плотности потока мощности можно приближенно вычислить по формуле:

    ППМ = РG / 4 p L r2,

    где    Р – излучаемая мощность,

    r – расстояние до излучателя,

    G – коэффициент направленности излучателя, зависящий от геометрических размеров излучателя. Если размеры малы, то его можно считать точечным и тогда G = 1.

    Применяя указанную формулу, найдем для одного импульса


    ППМ = 16 кВт / кв.м., что больше допустимого значения.

    Следовательно, необходимо разработать меры защиты от СВЧ излучения. Для этого рассчитаем необходимую величину ослабления поля и коэффициент эффективности экрана:

    1 = ППМ = 64000.
    М

    ППМ доп

    Для защиты человека от высоких уровней СВЧ трактов необходимо предотвращать появление щелей и зазоров между соединяемыми фланцами СВЧ трактов. Для этого следует устанавливать прокладки из мягких металлов, например, свинца. Если фланцевое соединение часто разбирают, то нужно устанавливать специальные пружинные прокладки.

    Защита от СВЧ применяется для обеспечения безопасности персонала и населения, находящихся в зоне действия мощных источников СВЧ. В широком понимании под защитой подразумевают любые мероприятия, направленные на снижение интенсивности СВЧ и электромагнитных полей.

    Для защиты от СВЧ излучения нужно использовать следующие типы защиты:

    1. Защита временем – ограничение времени пребывания людей в зоне с повышенным СВЧ излучением.

    2. Защита расстоянием – увеличение расстояния от источника излучения до рабочего места. Рассчитаем расстояние от источника излучения до рабочего места:

    r без =

    Ö

    Ризл G

    4 p L ППМнорм

    После подстановки данных найдем, что расстояние между источником и рабочими местами должно составлять не менее 1 метра. Граница зоны безопасного расстояния отмечается ограждением или предупредительным знаком.

    3. Защита пониженной мощностью.

    Ясно, что в данном случае этот тип защиты является наиболее эффективным. Поэтому рассчитаем экран из алюминия, который установим между СВЧ трактом и рабочим местом на расстоянии 20 см от источника излучения. Толщину экрана можно рассчитать по формуле:

    Z = - Ln М/2
    Ö wc m
    2

    где    c – электрическая проводимость материала (для алюминия 3,54 + 5 1/Ом см)

    m – магнитная проницаемость материала 4 p 10 – 9 ГН / см.

    После подстановки данных найдем, что для экранировки требуется лист алюминия толщиной 0,008 мм. Используем для защитного экрана лист толщиной 0,5 мм, свернутый в цилиндр и надетый сверху на СВЧ тракт.

    4. Защита экранами.

    5. Рациональная планировка рабочего места.

    6. Применение средств, индивидуальной зашиты.

    7. Уменьшение составляющих напряженностей электрического и магнитного полей в зоне излучения – уменьшение плотности потока энергии.

    4.5. Температура, влажность, давление [11].

    Системы вентиляции и отопления в цехе динамических испытаний должны обеспечивать параметры микроклимата в соответствии с требованием ГОСТ 12.1.005-88 [12], а также в соответствии с главой СНиП 2-33-75 "Отопление, вентиляция и кондиционирование воздуха".

    – температура воздуха: в тёплый период года 23 – 25 0С,

    в холодный период года 22 – 24 0С;

    – влажность: 40 – 60 %;

    – давление: нормальное по ГОСТ 12.1.005-88.

    Для поддержания заданных значений температуры и влажности в помещениях применяют кондиционирование и вентиляцию. Кондиционирование воздуха должно обеспечивать автоматическое поддержание параметров микроклимата в необходимых пределах в течении всех сезонов года, очистку воздуха от пыли и вредных веществ, создание небольшого избыточного давления в чистых помещениях для исключения поступления неочищенного воздуха. Рекомендуемая интенсивность вентиляции для цеха составляет 0,5 – 1 куб.м. свежего воздуха в минуту на каждый квадратный метр пола.

    4.6. Требования к уровням шума и вибрации.

    Повышенный уровень шума на рабочем месте влияет на работоспособность, вызывая усталость. Источником шума могут быть несколько типов приборов в общей системе. Шум представляет собой беспорядочное сочетание звуков разной интенсивности и частоты. Шум оказывает вредное влияние на весь организм, и в первую очередь на сердечно-сосудистою и нервную систему. Шум неблагоприятно воздействует на человека: ослабляет внимание, увеличивает расход энергии при одинаковой физической нагрузке, замедляет скорость психических реакций, что может привести к несчастному случаю.

    Допустимые уровни звукового давления и уровня звука на рабочих местах должны соответствовать требованиям "Санитарных норм допустимых уровней шума на рабочих местах" (СН 3223-85) и не должны превышать предельно допустимых величин.

    Нормативные параметры шума на рабочих местах являются обязательными для всех организаций и предприятий. Нормы допустимого шума на рабочих местах регламентируются требованиями ГОСТ 12.1.003-83 [13] и составляют:

    – там, где работают математики, программисты и операторы видео дисплейных терминалов, не должны превышать 50 дБ, по шкале А;

    – в помещениях, где работают инженерно-технические работники – 60 дБ, по шкале А.

    Снизить уровень шума можно путем обивки стен шумопоглощающими материалами.

    4.7. Пожарная безопасность.

    Рабочее помещение должно удовлетворять требованиям по предотвращению и тушению пожара по ГОСТ 12.1.004-85 [14]. Обязательно наличие телефонной связи и пожарной сигнализации.

    Материалы, применяемые для ограждающих конструкций и отделки рабочих помещений, должны быть огнестойкими. Для предотвращения возгорания в зоне расположения прибора обычных горючих материалов (бумага) и электрооборудования, необходимо принять следующие меры:

    – в цехе динамических испытаний должны быть размещены углекислотные огнетушители типа ОУ-2, ОУ-5, ОУ-8, выбор углекислотного огнетушителя обусловлен тем, что углекислота не проводит электрический ток, с его помощью можно быстро ликвидировать очаг загорания или локализовать огонь до прибытия пожарной команды;

    – в качестве вспомогательного средства тушения пожара могут использоваться гидрант или устройства с гибкими шлангами;

    – для непрерывного контроля помещения необходима система обнаружения пожаров, так можно использовать извещатели типа КИ-1.

    Система должна быть сконструирована так, чтобы обеспечить отключение систем питания и кондиционирования воздуха. В сочетании с системой обнаружения следует использовать систему звуковой сигнализации.

    Инженеры-настройщики допускаются к выполнению работ только после прохождения инструктажа по безопасности труда и пожарной безопасности.

    В связи с выше сказанным можно сделать выводы о том, что в результате проведенных мероприятий: улучшения освещения рабочего места инженера; защиты от СВЧ – излучения, обеспечения электробезопасности; оптимальных параметров температуры, влажности и давления; снижения уровня шума и обеспечения пожарной безопасности.

    Снижается утомляемость глаз, улучшается работоспособность, уменьшается вредное влияние на нервную, сердечно-сосудистую системы и на весь организм в целом. Все это ведет к тому, что повышается безопасность, а следовательно и производительность труда инженера при настройке прибора.


    Заключение.

    Основными результатами исследований проведенных в дипломной работе являются следующие:

    1. Методом анализа по программе «Алмаз» проведен расчет существующего варианта ЭОС прибора КИУ-147. Расчетное значение первеанса первого луча составило 0,57 мкА/В3/2, а максимальное значение коэффициента заполнения канала пучком является недопустимо высоким и составляет 0,875 в области за вторым реверсом. Сделан вывод, о необходимости проведения оптимизации ЭОС с целью улучшения формирования пучка и уменьшения максимального значения коэффициента заполнения.

    2. Выполнен анализ причин плохого формирования пучка в существующей ЭОС. Показано, что для улучшения формирования пучка необходимо ликвидировать неламинарность электронных траекторий в области пушки и улучшить фазу встрела пучка в область второго реверса.

    3. На основе совокупности методов синтеза и анализа по программам «Синтез» и «Алмаз» рассчитана новая электронная пушка с высокой ламинарностью траекторий формируемого пучка. Первеанс пушки близок к первеансу существующего варианта ЭОС и составляет 0,57 мкА/В3/2.

    4. Проведен расчет ЭОС прибора с новой электронной пушкой от катода до коллектора. Показано, что применение новой пушки улучшило ламинарность электронных траекторий. Но радиус электронного потока в выходной части прибора уменьшен не значительно (приблизительно на 7 %). Анализ результатов расчета этого варианта ЭОС свидетельствует о том, что для уменьшения радиуса пучка в выходной части прибора необходимо провести расчет и оптимизацию распределения магнитного поля в ЭОС с новой электронной пушкой.

    5. Проанализированы возможные пути оптимизации и распределения магнитного поля существующей ЭОС. Сделан вывод о том, что путь оптимизации ЭОС за счет увеличения амплитуды магнитного поля в системе, может привести к магнитному насыщению перемычек между соседними пролетными каналами в полюсных наконечниках прибора. В этом случае в ЭОС возникают сильные поперечные магнитные поля приводящие к нарушению токопрохождения в приборе. Поэтому такой путь оптимизации ЭОС признан не приемлемым.

    6. Выполнена оптимизация ЭОС за счет уменьшения амплитуды используемого магнитного поля. Показано, что уменьшение амплитуды магнитного поля на 200 Гс в области за первым реверсом приводит к уменьшению коэффициента заполнения канала пучком с 0,875 до 0,73. Последующее увеличение амплитуды магнитного поля в области за вторым реверсом на 100 Гс приводит к уменьшению коэффициента заполнения канала пучком в области за вторым реверсом до значения 0,66. Далее был рассчитан вариант ЭОС для случая, когда индукция магнитного поля везде была уменьшена на 5 % по сравнению с предыдущим вариантом. При этом коэффициент заполнения канала пучком в области за вторым реверсом достиг приемлемого значения равного 0,57. Это свидетельствует о том, что поставленная в дипломе задача полностью выполнена.


    Список литературы.

    1. Молоковский С.И., Сушков А.Д. Интенсивные электронные и ионные пучки. – М.: Энергоатомиздат, 1991. – 302 с.

    2. Алямовский И.В. Электронные пучки и электронные пушки. – М.: Советское радио, 1966. – 456 с.

    3. Чечерников В.И. Магнитные измерения. Под ред. Проф. Кондорского Е.И. – М.: Московский университет, 1963. – 283 с.

    4. Невский П.В. Теория В.Т. Овчарова и примеры ее использования при расчете электронно-оптических систем электровакуумных приборов. Обзоры по электронной технике. Серия 1. Электроника СВЧ. Выпуск 15 (1483) – М.: ЦНИ Электроника, 1989. – 48 с.

    5. Великанов К.М., Власов В.Ф., Карандашова К.С. Экономика и организация производства в дипломных проектах. – Л.: Машиностроение, 1977. – 207 с.

    6. Методические указания по организационно-экономической части дипломных проектов – М.: МИРЭА, 1990. – 30 с.

    7. Выполнение организационно – экономической части дипломных проектов. – М.: МИРЭА, 1987. – 67 с.

    8. ГОСТ12.0.003. – 74. Опасные и вредные производственные факторы.

    9. Самгин Э.Б. Освещение рабочих мест. – М.: МИРЭА, 1989. – 27 с.

    10. ГОСТ12.1.019 – 79. Электробезопасность. Общие требования.

    11. Розанов В.С., Рязанов А.В. Обеспечение оптимальных параметров воздушной среды в рабочей зоне. – М.: МИРЭА, 1998. – 44 с.

    12. ГОСТ12.1.005 – 88. Воздух рабочей зоны. Общие санитарно-гигиенические требования.

    13. ГОСТ12.1.033 – 83. Шум. Общие требования безопасности.

    14. ГОСТ12.1.004 – 85. Пожарная безопасность. Общие требования.


    Речь.

    В последние годы широкое распространение получили многолучевые конструкции пролетных клистронов реверсной магнитной фокусировкой. Такие приборы требуют для своей работы сравнительно низковольтные источники питания и обладают сравнительно малым весом и габаритами.

    Можно показать, что использование реверсной магнитной системы позволяет в (n + 1)2 раз уменьшить вес системы по сравнению со случаем использования однородного магнитного поля (n – число реверсов). Однако, расчет фокусирующей системы мощного клистрона с реверсной магнитной фокусировкой представляет собой решение сложной задачи электронной оптики, так как в таких ЭОС необходимо обеспечить высокую ламинарность электронных траекторий и обеспечить оптимальную фазу влета пучка в каждый реверс.

    В данной работе рассматривается использование современных компьютерных программ расчета для анализа и оптимизации клистрона КИУ-147, разработанного около 15 лет тому назад. Этот клистрон используется в ускорительной технике и имеет следующие параметры:

    Импульсная мощность, мВт – 5; Анодное напряжение – 52 кВ;
    Средняя мощность, кВт – 25; Количество электронных лучей – 40;
    Частота, мГц – 2450;

    Расположение электронных лучей:

    а) диаметр 84 – 21 луч,

    б) диаметр 64 – 19 лучей;

    Количество реверсов – 2; Диаметр пролетного канала 6,5 – 8 мм;
    КПД, % - 44;

    Суммарный первеанс » 20 ´ 10-6 А/В3/2;

    Коэффициент усиления, дБ – 50; Диаметр катода – 8,6 мм.

    Основной целью дипломного проекта является расчет конфигурации электронных лучей в этом приборе от катода до конца пролетного канала и последующая оптимизация ЭОС на основе современных программ компьютерного расчета.

    Внизу на плакате 1 представлены результаты расчета, методом анализа по программе «Алмаз», электронного луча от катода до конца пролетного канала для существующего варианта ЭОС. На этом рисунке показано распределение реверсного магнитного поля на оси одного из пролетных каналов и траектория электронов формируемого электронного потока. Расчетное значение первеанса одного луча составило Рm = 0,57 мкА/В3/2, что соответствует суммарному расчетному первеансу ЭОС (0,57 ´ 40 = 22,8 мкА/В3/2).

    Из этого рисунка следует, что максимального значения радиус электронного потока достигает в выходной части прибора и составляет 2,7 мм. Поскольку радиус пролетной трубы клистрона равен 3,25 мм, то максимальное значение коэффициента заполнения канала пучком (b), по результатам расчета, равно 0,875. Такое значение коэффициента заполнения является недопустимо высоким. В связи с этим встает задача оптимизации данной ЭОС с целью уменьшения радиуса формируемого пучка. Как видно из этого рисунка имеются две причины увеличения радиуса пучка в выходной части прибора.

    – неламинарность электронных траекторий в пушке.

    – не оптимальность фазы влета пучка во второй реверс. При подходе ко второму реверсу электронный пучок является расширяющимся, а не сходящимся.

    Для ликвидации указанных причин необходимо провести оптимизацию электронной пушки для устранения неламинарности и оптимизацию распределения магнитного поля, для изменения фазы влета пучка во второй реверс.

    Расчет оптимизации электронной пушки, проводился на основе использования совокупности методов синтеза и анализа. На плакате 2 показаны результаты расчета пушки методом синтеза (по программе «Синтез»). При расчете пушки задавались следующие 3 параметра:

    Рm = 0,57 мкА/В3/2; S = 3; b = 0,5.

    Упрощение синтезной формы фокусирующих электродов проводилось методом анализа (по программе «Алмаз»), при этом теоретическую форму фокусирующих электродов, заменили реальной, как показано на рисунке. Окончательный оптимизированных вариант электронной пушки показан на плакате 3. Полученные основные параметры пушки следующие:

    Анодное напряжение – 52 кВ;

    Микропервеанс одного луча – 0,57 мкА/В3/2;

    Ток одного луча – 6,7 А.

    Пушка формирует ламинарный электронный поток. Существующую ранее неламинарность удалось ликвидировать.

    Далее эта электронная пушка была поставлена в систему, и был выполнен новый расчет ЭОС от катода до конца пролетного канала. Результаты расчета показаны вверху на плакате 4 (рис.2.5). Сравнивая эти данные (рис.2.5) с результатами расчета на рис.2.2 можно сделать вывод о том, что применение новой электронной пушки улучшило ламинарность электронных траекторий. Теперь крайняя траектория не пересекает остальные траектории пучка. Однако радиус электронного потока в выходной части прибора уменьшился лишь на 7 %.

    Оптимизация распределения магнитного поля в системе проводилось также на основе использования программы «Алмаз». Как следует из рис.2.5 для улучшения фазы влета пучка во второй реверс амплитуду магнитного поля во второй области необходимо либо увеличивать, либо уменьшать. При увеличении амплитуды поля во второй области длина волны пульсации уменьшается и можно достичь того, что во второй реверс пучок будет входить сходящимся. При уменьшении амплитуды поля во второй области длина волны пульсации увеличивается и опять можно достичь того, что во второй реверс пучок будет входить сходящимся. Оба эти метода были исследованы практически. Внизу на плакате 4 приводятся результаты расчета пучка для случая когда амплитуда магнитного поля везде увеличена на 10 % (рис.2.6).

    Из рисунка следует, что увеличение магнитного поля на 10 % привело к заметному уменьшения радиуса пучка в выходной части прибора (приблизительно на 30 %). В этом случае электронный поток на входе во второй реверс не расходится, а практически параллелен оси пролетного канала. Казалось бы, что если еще увеличить магнитное поле, то в выходную область прибора электронный поток будет входить сходящимся, что приведет к дальнейшему улучшению параметров пучка в этой области. Однако, как показано в дипломе, такой путь не приемлем из-за опасности возникновения насыщения перемычек между соседними пролетными каналами в полюсных наконечниках прибора изготовленных из магнитомягкого материала. Расчет показывает, что если поле в зазоре увеличить до 1200 Гс, то индукция магнитного поля в перемычках полюсных наконечников составит 16200 Гс, что близко к индукции насыщения стали 03 ВД, составляющей примерно 20000 Гс.

    Путь увеличения толщины полюсных наконечников с целью снижения индукции в перемычках увеличивает протяженность зоны реверса и требует существенного изменения конструкции прибора. В связи с этим в дипломе улучшение структуры формируемого пучка достигается за счет уменьшения амплитуды используемого магнитного поля. Вернемся к варианту ЭОС представленному на рис.2.5, но магнитное поле во втором реверсе уменьшим на 100 Гс. Результаты расчета такой ЭОС вверху на плакате 5 (рис.2.7). Сравнивая этот рисунок с рис.2.5 находим, что уменьшение амплитуды магнитного поля несколько улучшило фазу влета пучка в область второго реверса и уменьшило радиус пучка в третьей области.

    Внизу на плакате 5 (рис.2.8) показаны результаты расчета для случая, когда поле во втором реверсе еще уменьшили на 100 Гс. Сравнивая рис.2.8 и рис.2.5 видим, что уменьшение индукции магнитного поля на 200 Гс существенно улучшило фазу влета пучка во второй реверс и конфигурацию пучка в третьей области.

    Вверху на плакате 6 (рис.2.9) показаны результаты расчета пучка, когда индукции магнитного поля в третьей области увеличили на 100 Гс по сравнению с рис.2.8. Это изменение магнитного поля заметно уменьшило радиус пучка в третьей области.

    Внизу на плакате 5 (рис.2.10) показаны результаты расчета пучка для случая, когда индукции магнитного поля везде уменьшили на 5 %, по сравнению с результатом расчета, показанным на рис.2.9.

    Это и есть оптимизированный вариант ЭОС. Сравнивая рис.2.10 с исходными вариантом ЭОС показанным на рис.2.5, следует сделать вывод о том, что в результате проведенного исследования удалось уменьшить в 1,4 раза радиус формируемого пучка в третьей области и ликвидировать неламинарность электронных траекторий в потоке. Амплитуда магнитного поля в оптимизированной ЭОС составляет в первой области – 760 Гс, во второй области – 746 Гс и в третьей области – 1007 Гс.

    Применение новой оптимизированной ЭОС должно существенно улучшить параметры прибора КИУ – 147.


    Плакат 1.

    Устройство исходного варианта электронно-оптической системы и результаты расчета конфигурации электронного луча в нем.

    Импульсная мощность, мВт – 5; Анодное напряжение – 52 кВ;
    Средняя мощность, кВт – 25; Количество электронных лучей – 40;
    Частота, мГц – 2450;

    Расположение электронных лучей:

    а) диаметр 84 – 21 луч,

    б) диаметр 64 – 19 лучей;

    Количество реверсов – 2; Диаметр пролетного канала 6,5 – 8 мм;
    КПД, % - 44;

    Суммарный первеанс » 20 ´ 10-6 А/В3/2;

    Коэффициент усиления, дБ – 50; Диаметр катода – 8,6 мм.


    Плакат 2.

    Оптимизация электронной пушки.

    Рm = 0,57 мкА/В3/2

    S = 3

    b = 0,5


    Плакат 3.

    Оптимизация электронной пушки.

    Анодное напряжение – 52 кВ;

    Микропервеанс одного луча – 0,57 мкА/В3/2;

    Ток одного луча – 6,7 А.


    Плакат 4.

    Конфигурация электронного луча при различной амплитуде магнитного поля.


    Плакат 5.

    Конфигурация электронного луча при различной амплитуде магнитного поля в различных реверсах.


    Плакат 6.

    Оптимизированная электоронно-оптическая система прибора.


    Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.