МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Курсовая работа: Генетико-статистический анализ комбинационной способности сортов и форм яровой мягкой пшеницы по коэффициенту хозяйственной эффективности фотосинтеза


    (4)

    где Ij ,j значение j -го признака у идеала и ожидаемого потомства; аj -весовoй коэффициент j-го признака;  - стандартное отклонение j-го признака в наборе сортов.

    В этом случае вектор идеала представляет собой совокупность оптимальных (наилучших) значений селекционных признаков, полученных при испытании сортов в различных условиях.

    В методе С. П. Мартынова признаки могут быть разработаны на несколько групп с одинаковыми весами для признаков в одной группе. Их подсчитывают по формуле (5):

    а = ркN / пк;к = 1,....,G,(5)

    где рк - заданный вклад k -й группы признаков в некоторую меру сходства ожидаемого потомства и заданного идеала; N - общее число признаков; пк - число признаков в k-й группе; G - число групп.

    Общим недостатком методов, оценивающих близость к идеальному сорту средних значений признаков ожидаемого потомства, является отсутствие учета генетического разнообразия популяции потомства. Один вариант скрещивания может давать большую близость средних к идеалу, но иметь низкое генетическое разнообразие популяции потомства по изучаемым признакам, а второй - дальше от идеала по средним, но с гораздо большей генотипической изменчивостью. Во второй популяции потомства больше вероятность отобрать формы, близкие к идеальному сорту. Поэтому генетическое разнообразие потомства также оценивать и учитывать при подборе родительских форм [1].


    1.3.2 Комбинационная способность и методы ее определения

    Общую комбинационную способность (ОКС), как правило, устанавливают на основе топкроссных испытаний. Для определения специфической комбинационной способности (СКС) необходимы диаллельные скрещивания, которые включают в себя все возможные комбинации скрещивания между серией сортов и линий. Соответствующие методы определения комбинационной способности разработал Б. Гриффинг, предложивший четыре метода анализа диаллельного скрещивания:

    1. Изучают родительские формы, F1 - гибриды прямых и обратных скрещиваний всего m2 генотипов.

    2.  Изучают родительские формы и F1 полученные в результате прямых скрещиваний, - всего m(m+1)/2 генотипов.

    3.  Изучают только прямые и обратные гибриды F1 - всего m(m-1) генотипов.

    4.  Изучают только прямые гибриды F1 - всего m(m-1)/2 генотипов.

    Для анализа комбинационной способности в целях гетерозисной селекции, как правило, применяют метод IV.

    Топкроссы применяют для определения общей и специфической комбинационной способности при селекции на гетерозис. Для этого линии и сорта скрещивают с одним или несколькими сортами - анализаторами (тестерами). При этом в селекции самоопыляющихся растений большое значение имеет определение эффектов общей комбинационной способности, по величине которых можно судить о донорских свойствах скрещиваемых форм [1].

    Поликросс требует определенной подготовительной работы и планирования. Однако при использовании поликросса не требуется проводить оценку комбинационной способности родителей. Применяется главным образом к тем перекрестноскрещивающимся культурам, у которых получение семян от контралируемых скрещиваний затруднено. Результаты поликроссного испытания указывают на сорта, имеющие повышенную комбинационную способность, которые затем рекомендуют в состав синтетической популяции. По методам Гриффинга возможны два варианта оценки исходного материала. Вариант I (модель I) применяют, когда родительские формы для исследования отбирают специально и необходимо оценить их комбинационную способность. Формы одновременно являются тестерами, с помощью которых выявляют комбинации скрещиваний. Вариант II (модель II) используют, когда родительские формы отобраны случайно из популяции, которые необходимо оценить (тестером служит исследуемая родительская популяция). Исходные линии случайно отобраны из популяции, полученной длительным самоопылением (без отбора) генотипов исследуемой популяции. В данном случае представляют интерес не сами пара - метры отдельных родительских линий, а компоненты генотипической и дисперсии признака в исходной популяции. Значение признака для гибридной комбинации между i-м j -м родительским сортом в k-м повторении можно выразить в биометрической модели следующий вид уравнения (6):

    xijk=µ+gi+gj+sij+ri+ek (6)

    где хijk- величина признака у гибрида F1 между i-й и j-й родительскими линиями в k-м повторении; µ- среднее значение признака в наборе линий и гибридов F1, gi , gj эффект общей комбинационной способности i-й и j-и родительских линии; sij - эффект специфической комбинационной способноcти; ri - реципрокный эффект при скрещивании i-й и j-й линий; ек- эффект, обусловленный случайной ошибкой в k-м повторении.

    Существенность отношения определяемая по Р - критерию Фишера, указывает, что между исследуемыми гибридами (или гибридами и линиями) имеются различия по величине признака, случайные ошибки опыта. Если различия не значимы, дальнейший анализ комбинационной способности не проводят. Оценки и их разности, необходимые для дальнейшего анализа, несут случайные ошибки, которые характеризуются дисперсиями ошибок (var) (7):

    (7)

    Третий метод Гриффинга. Оценка одного из вкладов в дисперсию СКС меньше нуля. Это объясняется неучтенными ошибками опытов и, возможно, неполным соответствием данных стандартным предположениям дисперсионного анализа [1].

    Теоретическая основа метода Хеймана. Данный метод базируется на предположении, что количественный признак детерминирован k полиморфными локусами, точнее блоками сцепленных полигенов. Каждый локус в анализируемом наборе из родительских линий может иметь два аллельных состояния. Вклад этих генных различий в оценки статистических параметров, сред - них, дисперсий, ковариаций будут следующими (без учёта ошибок опытов). Дисперсия величин признака у родительских линий (8):

    где ∑ - сумма по всем k полиморфным локусам; D - изменчивость аддитивных эффектов аi у родителей с учетом частот pi и qi

    Метод Хеймана можно рассмотреть и как генетический анализ популяции. Из уравнении следует, что при выполнении требований на Э влияют только аддитивные, а на Н1 и Н2 - доминантные эффекты. Отношение характеризует степень доминирования в экспериментальном материале, среднюю по всем полиморфным локусам.

    Отношения позволяют сделать выводы относительно генетической детерминации количественного признака у изученных родительских форм. В этом состоит так называемый параметрический вариант метода Хеймана. Используется также регрессионный анализ Хеймана. Метод Хеймана обладает определенной робастностью - устойчивостью к неполному удовлетворению шести требований. Вопрос о проверке выполнения требований и о пределах устойчивости выводов до настоящего времени решен не полностью. Сравнительно низкие требования к объёму и структуре эксперимента позволяют методу Хеймана оставаться популярным в селекционно-генетических исследованиях растений [1].

    1.4 Методы отбора

    В селекции растений используют два основных метода отбора - массовый и индивидуальный.

    Массовый отбор по фенотипу и совместный посев отобранных растений применяют для перекрестно- и самоопыляющихся культур. Отбору растений или колосьев предшествует выращивание массовых популяции, а иногда и более поздних поколений для повышения степени гомозиготности у самоопылителей.

    Индивидуальный отбор применяют в ранних поколениях. Семена отобранных растений высевают отдельными рядками. Затем отбирают лучшие семьи и линии с последующим размножением перспективных номеров.

    Индивидуальный отбор применяют как для самоопылителей, так и для перекрестников (в том числе у двулетних и многолетних растений, у двудомных видов) [3].

    Отбор более эффективен по качественным признакам, по которым четко идентифицируются генотипы. По продуктивности ц другим количественным признакам отбор (особенно в ранних расщепляющихся поколениях) не всегда оказывается эффективным. Это может быть результатом маскирующих эффектов следующих генетических и средовых факторов:

    -  продуктивность растения в большой степени обусловлена внешней средой (пестротой почвенного плодородия), а также конкуренцией между растениями в посеве;

    -  в ранних поколениях фенотипический отбор самоопыляющихся растений по продуктивности слабо связан с урожайностью в продвинутых поколениях;

    -  взаимодействие генотип - среда.

    Конечная цель селекции самоопылителей - получение гомозигот для использования в качестве линейных сортов. При этом не каждый генотип, характеризующийся высокой продуктивностью в чистом посеве, будет в достаточной мере конкурентоспособным в смеси с другими генотипами. В экспериментах установлено, что нередко существует антагонизм между урожайностью и конкурентоспособностью. Поэтому естественный отбор благоприятствует агрессивным генотипам, обладающим низкой продуктивностью [1].

    1.4.1 Оценка наследуемости Н2 и h2, методы, его определения, формы и понятия

    Отбор будет действительным только в том случае, если хотя бы часть наблюдаемой фенотипической изменчивости признака, подлежащего отбору, обусловлена генотипически. Чем больше доля генотипически обусловленного варьирования признака в его общей фенотипической изменчивости, тем теснее связь между генотипом и фенотипом и тем эффективнее отбор. Мерой доли генотипически обусловленной изменчивости в общем фенотипическом варьировании служит коэффициент наследуемости. Косвенно по коэффициенту наследуемости можно сулить и о доле изменчивости, обусловленной влиянием внешней среды. Коэффициентом наследуемости в широком смысле называется отношение генотипической вариансы к общей вариансе (9):


    (9)

    где Vg - генотипическая варианса; Vрh - общая фенотипическая варианса.

    Коэффициент наследуемости в узком смысле показывает отношение вариансы, которая вызвана прямым аддитивным действием генов, к общей фенотипической вариансе (10):

     (10)

    где Va - вызвана прямым аддитивным действием генов; Vрh – общая фенотипическая варианса.

    Однако сложно определять коэффициент. Коэффициент может варьировать от 0 до 1 [3].

    1.4.2 Коррелятивный сдвиг СК

    Корреляция признаков приводит к тому, что при отборе по одному из них потомство отобранных особей отличается от исходной популяции не только по признаку, но и по всем другим признакам, которые коррелируют с отбираемым признаком. Это косвенное действие отбора называется коррелятивным сдвигом (СR). Если отбор ведут по некоторому признаку x, который коррелирует с другим признаком у, то коррелятивный сдвиг составляет (11):

    СRу=ihxhyraσphy,(11)

    где i - интенсивность отбора.

    Коррелятивный сдвиг служит причиной неожиданных эффектов отбора и может быть использован целенаправленно при его проведении. Возможны три случая.

    1. Улучшаемый признак имеет низкую наследуемость, но он коррелирует с другими признаками, имеющими более высокую наследуемость. В данном случае проводят косвенный отбор по признакам с более высокой наследуемостью, если выполнено условие: hуrа>hх.

    2.  Признак, подлежащий генетическому улучшению, сложно определить, но он хорошо коррелирует с признаками, которые легче оценить.

    3.  Признак, по которому осуществляют отбор, можно оценить только на последних этапах индивидуального развития. Но он коррелирует с признаками, различимыми уже на первых этапах. В этом случае корреляция признаков используется для раннего отбора [2].

    1.4.3 Селекционный дифференциал 8, интенсивность отбора 1

    Интенсивность отбора можно определить с помощью селекционного дифференциала (S) или интенсивности отбора (i). Относительную силу воздействия внешней среды и генетического влияния на признак измеряют с помощью коэффициента наследуемости (h2). 'Самой простой мерой интенсивности отбора по количественным признакам служит селекционный дифференциал, обозначаемый 8. Он представляет собой разность между средней величиной признака в популяции отобранных особей () и соответствующей средней его величиной в исходной популяции () (12):

    (12)

    Пример. Если в популяции со средней высотой растений () = 125 см отбирают все низкорослые растения со средней высотой () = 90 см, то полученный селекционный дифференциал составляет 35 см.

    Чем интенсивнее ведется отбор, тем выше значение 8. С помощью 8 строгость отбора по определенному признаку в различных популяциях можно сравнить только в том случае, если изучаемые популяции имеют одинаковую изменчивость определенного признака. Чтобы получить от величины изменчивости меру интенсивности отбора, надо выразить селекционный дифференциал в единицах среднего квадратного отклонения данного признака

    (σp) (13):

    (13)

    Показатель i и обозначает интенсивность отбора [3].

    1.4.4 Коэффициент на отбор, К, респонс

    Коэффициент наследуемости даёт возможность предсказать результат (сдвиг) отбора. Сдвигом отбора, илиреспонсом R, называется наследуемая часть селекционного дифференциала S. Она равна произведению селекционного дифференциала на коэффициент наследуемости (14):

    (14)

    При выражении селекционного дифференциала через интенсивность отбора (S = iσp)формула приобретает вид (15):

    (15)

    С помощью формулы сдвига при отборе можно делать различные прогнозы, в частности предсказать, какой сдвиг R может быть достигнут при определённом селекционном дифференциале S или какое значение S необходимо, чтобы при определённом коэффициенте наследуемости обеспечить заданный сдвиг R [6].

    1.4.5 Оценка индекса отбора I

    Этот индекс позволяет на основе математической оптимизации получить наиболее выгодные сочетания признаков у будущего сорта. Индекс отбора имеет вид (16):

    (16)

    где x1, х, хп - фенотипические значения признаков, на которые ведётся отбор;

    b1,b2,bn - коэффициенты признаков.

    Для вычисления индекса отбора требуется определить фенотипические и генотипические (аддитивные) вариансы по каждому признаку и ковариансы по каждой паре признаков. Кроме того, устанавливают факторы экономического значения признаков (желательный сдвиг). Затем, решая систему нормальных уравнений, находят коэффициенты признаков.

    Например, если проводят одновременный отбор по двум признакам - урожай зелёной массы и число початков кукурузы или урожай хлопка-сырца и длина волокна хлопчатника, то для нахождения коэффициентов признаков (b1,b2) используют систему из двух нормальных уравнений (17,18):

    (уравнение I)(17)

     (уравнение II)(18)

    где - фенотипическая варианса первого признака;  - аддитивная варианса первого признака; - фенотипическая коварианса первого и второго признаков; - аддитивная коварианса; а1 и а2 - факторы экономического значения первого и второго признаков соответственно; b1 и b2 - искомые коэффициенты первого и второго признаков соответственно [6].

    1.5 Оценка устойчивости к полеганию

    В полевых условиях устойчивость селекционных материалов к полеганию оценивают по пятибалльной шкале: 5 - полегание отсутствует, 4 - слабое полегание, стебли слегка наклонены, 3 - среднее полегание, наклон стеблей к поверхности почвы под углом 45°, 2 - сильное полегание, 1 - очень сильное полегание, механизированная уборка невозможна.

    Устойчивость растений к полеганию в полевых условиях можно определять по силе, приложенной для выдёргивания растений из почвы, с помощью динамометра.

    Для повышения объективности глазомерной балльной оценки устойчивости к полеганию растений в полевых условиях В.С. Кузнецов предложил учитывать балл устойчивости к полеганию по следующей формуле (19):

     (19)

    где Б - балл устойчивости к полеганию;

    в - высота растений, см;

    С - слой полёгших стеблей, см.

    И. Рагастис предложил формулу, близкую к вышеприведённой (20):

    (20)

    где М- показатель устойчивости к полеганию, %;

    х - высота полёгшего стеблестоя, см;

    Н - высота растения, см.

    Например, 40 см - высота стеблестоя, а у растения высотой 100 см показатель устойчивости равен 40%. Чем выше данный показатель, тем выше устойчивость [7].

    1.5.1 Оценка засухоустойчивости

    Засушник представляет собой деревянный или металлический каркас, покрываемый подвижной крышей из полиэтиленовой плёнки. При выпадении дождя крышу надвигают. Ширина засушника - не более шести метров, длина - произвольная. Вокруг роют канавку шириной 30-35- см и глубиной 60-70 см для изоляции от воды. Корни растений изолируют от грунтовых вод. Для этого на глубине два метра укладывают два слоя полиэтиленовой пленки. Бывают также стационарные стеклянные засушники (оранжереи) и засушники со съёмной крышей из брезента или клеёнки. В засушливую погоду в засушнике моделируют атмосферную и почвенную засухи, во влажные годы - только почвенную

    При оценке засухоустойчивости с использованием засушника для удобства сравнения изучаемых сортов предложена балльная система оценки (табл. 1).

    Таблица 1 - Балльная система оценки засухоустойчивости

    Засухоустойчивость
    % Балл По классификатору ВИР
    90,1-100,0 5 9
    80,1-90,0 4 7
    70,1-80,0 3 5
    60,1-70,0 2 3
    50,1-60,0 1 1

    Суть данной системы оценки состоит в том, что при оценке селекционного материала учитывают два показателя - физиологическую засухоустойчивость (в % к контролю) и абсолютную зерновую продуктивность в условиях засухи (засушник). Чтобы одновременно анализировать оба показателя, можно использовать систему координат. По оси абсцисс откладывается величина физиологической засухоустойчивости сортов, а по оси ординат - его урожайность в условиях засухи. Наибольший интерес для селекции на засухоустойчивость представляют сорта, которые по обоим показателям имеют самые высокие значения [6].

    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.