МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Дипломная работа: Виробництво кормового білка

    Для вивантаження культури в днище апарата передбачений спусковий штуцер 16. Усередині апарата проходить вал 6 із закріпленими на ньому пристроями, що перемішують, що складаються із закритих турбін 8 діаметром 600 - 1000 мм із лопатами шириною 150 - 200 мм, розташованих в 2 яруси, третьою відкритою турбіною, установленої над барботером 13 для повітряних міхурів.

    Ферментатор обладнаний сорочкою 17, що складається з 6 – 8 ярусів – секцій. Кожна секція складається з 8 навитих каналів, що оперізують, виконаних з голкового профілю розміром 100 – 60 мм. Площа поверхні охолодження сорочки 60 м2. Внутрішня поверхня охолодження площею 45 м2 складається зі змійовиків 9 діаметром 600 мм із числом витків 23 при загальній висоті змійовика 2,4 м.

    Ферментатор розрахований для роботи під надлишковим тиском 0,25 МПа й стерилізації при температурі 130 – 140 °С, а також для роботи під розрядженням. У процесі вирощування мікроорганізмів тиск усередині ферментатора в межах 50 кПа; витрата стерильного повітря до 1 м3 (м3*хв). Висота стовпа рідини в апарату 5 - 6 м при висоті апарата більше 8 м. [5].

    Технічна характеристика ферментатора з механічним перемішуванням барботажного типу.

    Обсяг геометричний, м3 63

    Частота обертання вала мішалки 60 – 140 хв-1

    Площа поверхні охолодження 55 м2

    Площа поверхні внутрішніх змійовиків 39 м2

    Тиск 0,29 Мпа

    Температура стерилізації 413 °С

    Діаметр вала 200 мм

    Довжина вала 8500 мм

    Окружна швидкість на кінці турбін 6,5 м/с

    Діаметр ферментатора 3300 мм

    Висота ферментатора з електродвигуном 12015 мм

    2.2 Вибір середовища і сировини

    Як середовище для одержання білка зручніше за все використати молочну сироватку. [18]. Наявність у сироватці джерел вуглецю й ростових факторів дозволяє вважати її перспективною сировиною в біотехнологічних процесах. У сироватці втримується 50 % сухих речовин молока, у їхньому числі молочний жир, розчинні азотисті з'єднання й мінеральні солі, а також вітаміни, ферменти, органічні кислоти. Всі види молочної сироватки є джерелами молочного цукру (лактози), зміст якого становить 70 % сухої речовини. Поряд з харчовою цінністю молочна сироватка й продукт, отриманий з неї, мають дієтичне й навіть лікувальне значення.

    По органолептичним і фізико-хімічних показниках сироватка повинна відповідати вимогам ДСТу. Вона являє собою однорідну рідину зеленуватого цвіту, без сторонніх домішок, допускається наявність білкового осаду.

    Молочна сироватка є гарним живильним для середовищем розвитку мікроорганізмів. У ній швидко розмножуються різні групи мікробів, походження яких зв'язане як із залишковою, термостійкою й термофільною мікрофлорою пастеризованого молока, так і з мікрофлорою заквасок, використовуваних при виробництві білкових продуктів.

    Серед мікрофлори, що залишилася після пастеризації, є представники бактерій. Більшість термостійких мікробів є мезофілами, вони не розвиваються при температурі пастеризації, але, коли температура знижується, відновлюють ріст.

    У молочній сироватці є значна кількість представників вторинної, що виникають у ході технологічного процесу. Це бактерій групи кишкових паличок, гнильна мікрофлора й ін.

    У цей час із молочної сироватки виробляють більше 25 видів різної продукції: білків концентратів, напої, молочний цукор й ін.

    Використання молочної сироватки у виробництві хлібобулочних, кондитерських і ковбасних виробів дозволяє збагатити їхніми повноцінними білками тваринного походження. Молочну сироватку широко використають у с/г: одержання альбуміну для корму худоби й птаха, готування бактеріальних заквасок.

    2.2.1 Підготовка молочної сироватки для культивування мікроорганізмів

     Спочатку осаджують і видаляють із сироватки білки. Для цього проводять термічну обробку: нагрівають до 85 °С и витримка при цій температурі в плині 10 хв із одночасною зміною рН середовища до досягнення ізоелектричної крапки осадження білків. Для зсуву реакції середовища використають лужні реактиви, молочну й соляну кислоту. Ущільнений білковий осад видаляють відстоюванням і фільтрацією. Прояснену молочну сироватку використають для вирощування кормових дріжджів. На вихід білка впливає також глибина теплової обробки молочної сироватки: вихід білка тим вище, ніж вона глибше. Це пов'язане з більше повною коагуляцією білків з ефективністю стерилізації.

    До продуцентів білка на молочній сироватці ставляться дріжджі Candida utilis, tropicalis, Trichosporon cutaneum, Candida humicola, Wingea robertsii й інших.

    Великий вплив на нагромадження біомаси мікроорганізмів робить зміст у молочній сироватці сухих речовин. Вихідна сироватка має концентрацію сухих речовин від 5,3 до 6,9 %. При вирощуванні мікроорганізмів сироватку можна розбавити в 5 - 6 разів або згустити в 2 - 2,5 рази.

    При культивуванні дріжджових мікроорганізмів на молочній сироватці виходить (10 - 20 %) біомаса, що містить велику кількість вуглеводів і зольних елементів. Однак внесення сироватку додаткових джерел азоту у вигляді сечовини, сірчанокислого амонію й аміаку в кількості до 1 % збільшується вихід біомаси незначно (10 %), але сприяє підвищенню змісту білка в дріжджах в 2 - 4 рази. Молочна сироватка є відходом у харчовій промисловості.

    2.3 Умови культивування

    Всі продуценти білка, вирощування на молочній сироватці, аэрофіли, потреба їх у кисні велика, тому що окисляється не тільки лактоза, але й інші органічні речовини. Ці мікроорганізми – мезофіли, які добре ростуть при температурі від 24 до 32 °С. Молочна сироватка має високу буферну ємність і має діапазон значень рн від 4,5 до 6,5.

    Також молочна сироватка є гарним субстратом для вирощування кормових дріжджів [14]. Молочна сироватка є недорогим джерелом для одержання чистого білка: в 1 т сироватки в середньому втримується 10 кг білка.

    Як сировина для одержання білка дуже добре використати кормові дріжджі. У технічній літературі кормові дріжджі називають продукт, що складається із сухої клітинної маси грибів роду Candida, а також дріжджів, які є відходами виробництва спирту, пива й вина. Вирощування дріжджів - найпростіший спосіб одержати протеїн, вирощування дріжджів займає 2 години.

    Кормові дріжджі - суха біомаса (з вологістю до 10 %) дріжджі-подібних грибів. Кормові дріжджі мають світлі - жовтий цвіт і виробляються в гранульованому або порошкоподібному стані. Гранули мають діаметр - 5,0 - 9,0 мм, довжину - не більше 15 мм. Строк придатності кормових дріжджів - півроку.


    3. Конструктивний розрахунок ферментатора з механічною мішалкою й барбатером

    Розрахунок: корпуса ферментатора, барбатера, мішалки, обмінних пристроїв.

    Вихідні дані: геометричний об'єм 63 м3, гільза для термометра, відбійні перегородки, дві вертикальні труби в стінок апарата, об'ємна маса живильного ρ = 1060 кг/м3, динамічна в'язкість μс = 0,8 Па*с, робочий тиск у ферментаторе при стерилізації парою – 0,2 МПа, коефіцієнт заповнення ферментатора живильним – середовищем R = 0,6.

    3.1 Конструктивний розрахунок ферментатора

    1.  Розраховують загальну й циліндричну висоту (Нобщ, Нц). Внутрішній діаметр приймають звичайно 2 – 3 м, нехай Dвн = 3 м, висота еліптичної частини Нэл = 0,25*Dвн = 0,75 м, h – висота отбортовки, h > 2S, де S – товщина стінки днища 2 – 4 мм; нехай h = 2*3 = 6 мм.

    2.  Розраховуємо висоту Нц:

    Повний об'єм ферментатора

    Vп = Vц + 2Vдн,

    Vц = Vп – 2Vдн.

    Висота циліндричної частини апарата:

    Нц = (Vп - 2Vдн)/F,

    де F – площа перетину ферментатора по внутрішньому діаметрі.

    Об'єм еліптичної частини:


    ,

    де Р - внутрішній тиск в апарату, нехай Р = 0,25 Мпа;

    φ - коеффициент міцності шва, φ = 1

    Розраховуємо Нобщ.

    До розрахункової висоти ферментатора додаємо розміри електромотора, муфти, редуктора.

    Висоту культуральной рідини в апарату Нкж легко можна обчислити з рівняння:

    3.2 Розрахунок механічної мішалки ферментатора

    1.  При глибинних способах ферментації часто застосовують турбінні мішалки. Діаметр турбінної мішалки, м:


    Приймаючи коефіцієнт 0,3, одержимо:

    Частота обертання мішалки:

    Приймаючи кутову швидкість мішалки ώ = 5,08 м/с, одержимо:

    Знаючи величину dм вибирають мішалку, а по величині частота обертання мішалки вибирають редуктор. Вибір типу мішалки відповідає залежності в'язкості середовища й окружної швидкості мішалки. Вибираємо турбінну мішалку.

    2.  Розрахунок споживаної потужності, Вт:

    де КN – критерій потужності, що характеризується критерієм Рейнольдса (Reц), ρc – щільність середовища 1060 кг/м3; n – частота обертання мішалки, с-1; dm = 0,9 м.

    За графіком нормалі НДІ (див. Павлов, Романков, задачник по процесах й апаратам) знаходимо КN. КN при наявності відбійних перегородок й областей турбулентних потоків становить 8 – 10. Приймаємо КN = 10.

    Повна (розрахункова) потужність на валу мішалки, квт:

    де k2 – коефіцієнт враховуючу додаткову потужність при пуску мішалки, k2 = 1,3.

    ,

    де kп – коефіцієнт опору перегородок; kм – коефіцієнт опору труби для підведення повітря; для турбінної мішалки kтр = 0,3; kг – коефіцієнт опору гільзи для термометра, kг = 0,1; kз – опір змійовика.

    Остаточну настановну потужність Nуст у КВт приводного електродвигуна мішалки обчислюємо по формулі:

    ,

    де ή - КПД редуктора, приймаємо 0,95. Якщо рідина аэрується, то розраховує мощность, що, мішалки зменшується на 20 %, тобто одержимо 75,49 Квт.

    Число ярусів турбінної мішалки mя = Нкж / 1,5dм = 5,29/1,5 *0,9 = 3,92 ≈ 4 яруси.

    3.3 Розрахунок барбатера

    Досвіди показують, що, якщо швидкість витікання повітря з отвору барбатера дорівнює 20 м/с, а діаметр отвору 3 ÷ 5 мм, та відстань між центрами отворів повинне бути 25 - 30 мм, інакше окремі потоки повітря зливаються. При збільшенні швидкості витікання повітря на кожні 10 м/с відстань між отворами потрібно збільшити на діаметр отвору.

    Розраховуємо геометричні розміри барбатера кільцевого.

    1.  Робочий об'єм ферментатора

    2.  Кратність аерації для великого ферментатора 0,5 ÷ 1, а питомий об'єм витрати повітря 0,017 м3/(м3*с). Для аэрирования 37,8 м3 рідини потрібно повітря:

    3.  Площа всіх отворів барбатера при швидкості витікання повітря 20 м/с:

    , якщо діаметр отвору прийняти 5 мм, те його площа буде 1,96*10-5 м2. Тоді кількість отворів на барбатере буде:

    .

    4.  При Dвн = 3 м, dм = 0,9 м = діаметру кільця барбатера; довжина кільця складе: l = 2πr = .

    5.  Відстань між отворами складе:

    Це менше, ніж повинне бути (25 ÷ 30 мм). Для досягнення що рекомендує ∆l можна розташувати отвори в кілька рядів. У кожному ряді повинне бути отворів 2830 / (25 ÷ 30 мм) = 115 ÷ 95 шт.

    Усього рядів повинне бути:  - це багато.

    Зменшуємо кількість рядів отворів до 4, тоді кількість на барбатері складе 4(115 ÷ 95) = 452 ÷ 380. Приймемо кількість отворів – 400 шт. Сумарна довга 4 рядів буде: , а відстань між

    6.  Діаметр труби барбатера повинна бути в 5 разів більше ∆l:

    Dб =  [16].


    4. Матеріальний і тепловий баланс

    білковий мікроорганізм флотація ферментатор

    4.1 Матеріальний баланс

    Сучасне промислове використання мікроорганізмів для виробництва білка здійснюється у ферментерах, що працюють за принципом хемостата. Обсяги ферментерів досягають кілька сотень кубічних метрів. У середовище з мікроорганізмами, що розмножуються, безупинно подаються водяний розчин мінеральних солей і застосовуваний у конкретному процесі органічний субстрат. Культура піддається перемішуванню й охолодженню. Швидкість виділення тепла в процесі росту аеробних мікроорганізмів прямо пропорційна швидкості споживання ними молекулярного кисню. На кожен грам спожитого мікроорганізмами CО2 виділяється 142 % КДж. Витрати на охолодження тим нижче, чим більше різниця температур між охолодним агентом і ферментаційним середовищем.

    Раціональний процес вирощування здійснюється при лімітуванні росту мікроорганізмів киснем або близько до такого лімітування. Тому при раціональному проведенні процесу вирощування, коли масо-обмінна характеристика ферментера використається найбільше повно, швидкість фізіологічної теплопродукції у ферментері постійна, вона не залежить від використовуваного органічного субстрату й застосовуваного штаму мікроорганізму.

    Баланс мікроелементів переробки органічного субстрату в біомасу мікроорганізмів можна представити у вигляді наступного рівняння:

    СНmOl + aNH3 + b2 → ycCHpOnNq + (1 – yc)CO2 + C2O

    У цьому рівнянні брутто – формула органічного субстрату й висушеної біомаси дані розраховуючи на один атом вуглецю. Наприклад, брутто – формула глюкози приймає вид СН2. Букви m й l характеризують склад конкретного субстрату, а букви p, n, q - склад отриманої біомаси.

    На один атом вуглецю в клітинах дріжджів доводиться 1,7 атома водню й 0,55 атома кисню, а в клітинах бактерій на один атом вуглецю доводиться 1,82 атома водню й 0,47 атома кисню. Зміст азоту піддається більшим коливанням і його потрібно визначати в кожному конкретному випадку. Частка маси вуглецю в безводній біомасі безлічі різних мікроорганізмів дорівнює 0,46.

    Вус – вихід по вуглеці. Частка вуглецю субстрату. Рівна вус, перейшла в біомасу, а інша частина (1 – вус) потрапила в O2. Аналогічним образом коефіцієнт із у рівнянні балансу відповідає числу молів, що утворилися, води. У процесі росту вода може споживатися й утворюватися. Коефіцієнт із відбиває сумарний баланс води в процесі росту мікроорганізмів розраховуючи на безводну біомасу. Коефіцієнт із показує число молів води, що утворилася при використанні одиниці субстрату в процесі росту з виходом по вуглеці, або з виходом O2 (1 – вус), з витратою аміаку а, або з витратою кисню b.

    Матеріальний баланс можна розрахувати, знаючи кількість спожитого мікроорганізмами органічного субстрату й коефіцієнт при якому - або зі членів рівняння. Якщо кількість використаного субстрату невідомо, необхідно визначити два коефіцієнти.

    Можна скласти формули, таблиці й графіки. Дозволяючи по відношенню двох коефіцієнтів рівняння росту визначити матеріальний баланс. Розгляд цих відносин має сенс тільки в можливих межах. Такими межами є, з одного боку, випадок, коли росту мікроорганізмів немає й весь органічний субстрат окисляється до СО2 і Н2О, а з іншого боку - ідеальний процес, коли вся хімічна енергія органічного субстрату збереглася б як хімічна енергія в біомасі. Фундаментальність поняття енергетичного виходу росту дозволяє використати його для порівняння ефективності процесів вирощування різних мікроорганізмів на різних органічних субстратах у фізіологічно порівнянних величинах. Значення енергетичного виходу росту лежать у зручних межах від 0 до 1. Обумовлене в експерименті або на виробництві значення енергетичного виходу росту відразу показує, наскільки отримана величина вилучена від граничного значення.

    Значення виходу по масі, одержувані при вирощуванні мікроорганізмів на різних субстратах, не можна порівнювати для характеристики ефективності їхнього використання. Можна ввести поняття нормалізованих виходів, тобто виходів у відсотках від граничного значення для даного субстрату. Такі нормалізовані виходи були б ні чим іншим, як енергетичним виходом росту.

    Значну цінність представляє вимір так званих неінерційних показників матеріального балансу – швидкостей споживання кисню й аміаку, утворення СО2.

    При виборі параметрів для виміру балансу росту необхідно враховувати його специфічні закономірності на тім або іншому субстраті й характер змін показників балансу в робочій зоні вимірів. При вирощуванні дріжджів на метанолі відношення СО2/О2 менш зручно використати в зоні низьких виходів, чим у зоні середніх і високих значень виходів. А при вирощуванні на вуглеводах відношення СО2/О2 у зоні низьких виходів украй слабко залежить від виходу й, отже, незручно для визначення балансу росту.

    Нарешті, важливо знати, чи вірно визначений баланс. Тому доцільно визначити двоє або більше відносин параметрів балансу. Потрібно зрівняти значення енергетичного виходу росту, одержувані при вимірі різних компонентів балансу. Якщо енергетичний вихід ростів, одержуваний різними способами, виявляється однаковим, результат можна враховувати.

    Найважливішими узагальнюючими фізіологічними характеристиками росту мікроорганізмів є його швидкість й ефективність. Ефективність росту, що найбільше вдало виражати через енергетичний його вихід, є також технологічним показником першорядної важливості. Немає умов, оптимальних для росту взагалі, а є умови, оптимальні для швидкості росту. Локалізація оптимуму для цих двох характеристик може бути різної.

    При мікробіологічному одержанні білків на будь-якому конкретному субстраті важливо, щоб ферментер працював з найбільшою продуктивністю, тобто масо-обмінна характеристика використалася б у максимальній мері. Разом з тим надлишки органічного субстрату подавати у ферментер недоцільно, тому що він не буде використаний, утруднить очищення стічних вод, а при вирощуванні мікроорганізмів на вуглеводнях у надлишковій кількості попадає в продукт.

    Відомо, що при зміні режиму хемостатного вирощування навіть при збереженні тієї ж питомої швидкості росту може змінитися вихід. Тому при зміні температури або якого – або іншого фактора, що впливає на енергетичний вихід росту, може відбутися зміна ріст, що лімітує, фактора. У зв'язку із цим при зміні режимів культивування мікроорганізмів варто перевіряти, чи не відбулася зміна ріст, що лімітує, компонент харчування. Для цього потрібно ввести у ферментер разову дозу компонента, передбачуваного як, що лімітує ріст. Якщо цей компонент середовища дійсно лімітує ріст, негайно або в плині декількох хвилин зросте швидкість споживання кисню, аміаку, збільшується утворення О2. Реєструючи реакцію по кожному із цих неінерційних показників балансу, можна побачити чи лімітує доданий компонент ріст культури. Якщо реакції на добавку не спостерігається, отже, ріст культури лімітований яким - то іншим компонентом харчування. У такому випадку для виявлення ріст фактора необхідно послідовно випробовувати інші компоненти живильного середовища.

    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.