МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Дипломная работа: Виробництво кормового білка

    Поділ систем на фракції, що володіють різними плотностями, найбільше ефективно здійснювати при сепаруванні. Сепарування знайшло широке застосування при концентрації кормових дріжджів, при поділі емульсій і посвітлінні розчинів БАВ перед концентруванням у випарних апаратах й ультра фільтраційних установках.

    Застосування сепарування дозволяє розділяти важко фильтрующимся суспензії, інтенсифікувати виділення й концентрування МО й твердих часток розміром 0,5 мкм. Рушійної силоміць процесу є відцентрова сила.

    Ефективність сепарування пропорційна частоті обертання, його діаметру, розміру часток, різниці плотностей твердих і рідких фаз. При збільшенні в'язкості середовища знижується ефективність сепарування. Продуктивність сепарування залежить від фізико-хімічних властивостей обробленого продукту, а також від необхідного ступеня згущення. Для одержання протеїну зручніше за все використати сепаратори з відцентровим безперервним вивантаженням осаду.

    Культуральна рідина надходить через трубу у внутрішню порожнину барабана, де під дією відцентрової сили розтікається по тарілках. Більше щільна маса відкидається на периферію барабана. Отсепарована легка фракція рідиною приділяється через патрубок. Промивання сепаратора виробляється без його розбирання, для чого на барабана встановлюються 3 пружинних клапани, яких відкриваються, коли швидкість падає нижче певного рівня й зміст вивантажується перш, ніж барабан почне промиватися очищеною водою, а камера з напірною трубкою в центрі барабана очищається при зворотному токовищі промивної води.

    У МБП найбільше широко використають процес випарювання у вакуумних установках (апаратах) як найбільш економічний спосіб попередньої концентрації продуктами біосинтезу. Для виробництва протеїну вигідно використати випарні тонкошарові апарати з теплообміном: максимальне виробництво по паркій волозі, т/г - 8.

    Видалення води з напівпродуктів мікробного синтезу є однієї з кінцевих операцій у виробництві БА препаратів. До видалення води культуральна рідина має вологість 30 - 60 %. У сушильних установках вона збезводнюється до 5 - 12 %. Всі продукти мікробного синтезу діляться на 2 групи:

    - продукти, у яких після сушіння не потрібно охороняти життєздатність МО або високої активності препаратів й які використаються як джерела живильних речовин;

    - продукти, у яких після сушіння необхідно зберігати життєздатність або високу активність препаратів.

    У випадку одержання протеїну необхідно зберігати життєздатність і високу активність препаратів. Застосовуються умови, що щадять, сушіння. Необхідно знати вологість вихідних і кінцевих продуктів, капілярну структуру, в'язкість, поверхневий натяг, коефіцієнт теплоємності, температуропровідності й теплопровідність, термолабильность, хімічний склад й ін.

    Для одержань протеїну зручно використати розпилювальні сушарки для термолабільних розчинів. Концентрація сухих речовин у розчинах повинна бути не менш 10 %. РС застосовують м'який режим сушіння, що виключає втрати БАВ. У РС рідину перетворюють у туман. Камери для сушіння виготовляються з нержавіючої сталі. Достоїнством РС є швидкість сушіння, низька температура матеріалу сушіння, одержання порошку. Через швидке сушіння температура матеріалу, не перевищуючу температуру паркої вологи (60 – 70 °С) і вологи (60 – 70 °С) і залишається значно нижче температури сушильного агента. [16].

    1.4 Контроль якості одержання білка

    1.4.1 Попередня обробка сировини

    При використанні для готування живильних більшість середовищ перерахованих джерел сировини, особливо гідролізатів деревини, сульфітних лугів, різних видів вуглеводної сировини, необхідно вносити в середовище додатково мікроелементи, азотне й фосфорне харчування, вітаміни. Для цього використають кукурудзяний екстракт, дріжджові авто лізати або гідро лізати, відходи виробництва вітамінів, лимонної кислоти й ін. До складу середовищ уводять мінеральні солі, що містять азот, фосфор, калій, магній й інші елементи. Джерелом азоту в середовищі може бути аміак, що підтримує рН на певному рівні.

    Вирішальне значення для проведення біотехнологічних процесів має хімічний і біологічний склад води. Вода не повинна містити токсичних забруднень, вірусів, плазмід і суперечка.

    У процесі підготовки живильних важливих середовищ значення має змішування й стабілізація готового реакційного середовища.

    Підготовка живильних сполучених середовищ із використанням різних методів її обробки: фізико - механічних (здрібнювання компонентів, гомогенізація, перемішування, розчинення, фільтрація, теплова обробка); хімічних (регулювання окислювально-відбудовного потенціалу, рН середовища, іонної сили, осмотичного тиску, гідроліз, нейтралізація); біологічних (оцінка середовища на стерильність, попереднє культивування на середовищі, ферментативний гідроліз, ізомеризація й т.д.).

    Готові середовища можуть не вимагати стерилізації, і після готування на них можна культивувати мікроорганізми. У деяких випадках живильного необхідно середовища стерилізувати, що можна здійснити шляхом нагрівання, озонування, що стерилізує фільтрації, хлоруванні, обробки формаліном або опромінення.

    1.4.2 Культивування мікроорганізмів

    Основною стадією технологічного процесу виробництва мікробних білкових препаратів є культивування мікроорганізмів. У період пуску виробництва та стадія складається з підготовки й вирощування вихідного посівного матеріалу аж до доведення процесу в промислових ферментаторах, тобто до рівня, що коли утворилася біомасу вже можна відокремлювати від рідкої фази й сушити. При сталому виробництві чисту культуру посівного матеріалу подають у ферментатори для постійного підновлення культури. Тому незалежно від способу культивування й періоду роботи заводу процес вирощування мікроорганізмів має два щаблі: одержання чистої культури посівного матеріалу; вирощування мікробних мас у промислових ферментаторах.

    1.4.3 Одержання чистої культури

    Посівним матеріалом називають чисту культуру мікроорганізму, що виходить шляхом її послідовного асептичного пересівання із пробірки в колбу, а потім в апарати обсягу, що збільшується, аж до великого посівного апарата, з якого вона передається у виробництво при уведенні в роботу чергового ферментатора або в працюючий ферментатор для підтримки в ньому росту основної культури продуцента.

    Готування посівного матеріалу виробляється по наступних стадіях вирощування: в умовах лабораторії; у малому посівному апарату; у великому посівному апарату; у малому ферментаторі; у промисловому ферментаторі.

    Перша стадія вирощування посівного матеріалу здійснюється в заводській лабораторії. Головне - зберегти вихідний штам у незмінному стані.

    Суперечки мікроорганізмів, утворені нестатевим шляхом, являють собою найкращу форму збереження вихідного штаму мікроорганізму. Однак при тривалому зберіганні культури можуть виникнути спонтанні нерегульовані мутації. Тому необхідно періодично проводити розсів культури й перевірку її однорідності як по морфологічним, так і по фізіологічних ознаках. При розсіві з колонії, що дала найкращі показники по діагностуючому середовищу, роблять новий розсів в 30 - 40 пробірок. Потім з кожних 5 - 6 пробірок відбирають одну й перевіряють, що перебуває в ній мікроорганізм на здатність утворювати білок, продуцентом якого він є. Проведення такої безперервної селекції дозволяє зберегти в активній формі вихідну культуру продуцента.

    Однорідний штам мікроорганізму висівають у пробірки, вирощують д певного віку в оптимальних умовах, а потім поміщають у холодильник при температурі 3 – 4 °С. Пересівання культур проводять через певні проміжки часу. Тривалі паузи між пересіваннями неприпустимі, тому що при цьому виснажується й сохне середовище, позначається негативний вплив метаболітів, можливі мутації.

    При пересіваннях варто переносити тільки суперечки або невеликі шматочки міцелію без середовища, щоб у свіже середовище не вносити продукти метаболізму. Для тривалого зберігання штамів часто використають крохмальні середовища.

    Дріжджі зберігають в 10 % - ному водяному розчині гліцерину в запаяних ампулах в атмосфері рідкого азоту при низьких температурах (- 196 ÷ - 165 °С)

    Заготовлені чисті культури мікроорганізмів у міру необхідності подають у виробництво. Для цього штам МО асептично пересівають у качалочні колби із середовищем, що відповідає складу середовища, і вирощують до відповідного віку.

    Одержання чистої культури можна також здійснити в лабораторному ферментаторі періодичної або безперервної дії. Потім розведення чистої культури, що перебуває в стадії інтенсивного зростання, задають у малий посівний апарат з підготовленим живильним . середовищем

    Готування живильного для середовища посівного матеріалу окремо від основного виробництва здійснюють лише на деяких заводах.

    На другій стадії вирощування посівного матеріалу живильне й із дріжджове розведення надходять у малий посівний апарат обсягом 0,5 м3. Щільність початкової засівби невелика (0,01 % у перерахуванні на сухі дріжджі). Спочатку в посівний апарат подають близько 40 л середовища зі змістом РВ 2 - 2,6 % і розбавляють її в 4 - 4,5 рази стерильною водою так, щоб зміст РВ не перевищувало 0,45 - 0,5 %. Інтенсивно середовище, поступово додають інша кількість живильного розчину (70 - 90 л) зі швидкістю 7 - 8 л/г, при цьому рН підтримують на рівні 4 - 5,5 додаванням аміачної води.

    Культивування продовжують до нагромадження дріжджів 3,5 - 4 г/л (по сухій масі). Процес закінчується за 12 - 15 годин.

    Третя стадія готування посівного матеріалу здійснюється в посівних апаратах обсягом 4 – 5 м3. У них подають близько 180 - 200 л середовища, розбавляють в 6 - 6,5 рази стерильною водою й задають всі дріжджі, отримані на другій стадії (близько 300 л). Всю масу активно аэрують у плині 10 - 12 годин при одночасному доливі живильного із середовища розрахунку 70 - 75 л/г і додаванні аміачної води для підтримки рН.

    Четверта стадія процесу здійснюється в малому ферментаторі обсягом 12 – 15 м3. Апарат на 10 % заповнюють стерильною або прокип'яченою водою, уводять близько 0,5 м3 середовища й перекачують уміст попереднього апарата (2,5 – 2,7 м3). Вирощування посівного матеріалу триває 8 – 9 ч при постійному доливі середовища з розрахунку близько 1,5 – 1,7 м3 за один цикл. До кінця циклу дріжджів у середовищі повинне втримуватися 4 – 5 г/л (по сухій масі). Потім починають відбирати в основне виробництво по 1 – 1.5 м3 дріжджів у годину, додаючи одночасно свіже середовище зі змістом РВ 1 – 1,2 %. Процес триває від 5 до 10 год, після чого цикл готування посівного матеріалу відновляється.

    На початку кожного циклу в лабораторії відбирають варіанти культури дріжджів, які дали найкращі результати по нагромадженню білка й швидкості росту в основному виробництві.

    Якщо підприємство має більшу продуктивність й обсяг посівного матеріалу, рівний 1 – 1,5 м3/ч, недостатній, у схему готування посівного матеріалу включають п'яту стадію, тобто ще один ферментатор, в 4 – 6 разів більший по обсязі ферментатора четвертого ступеня. У цьому випадку четверту стадію процесу проводять, як третю, п'ятий апарат працює по режиму четвертої стадії, добір готових дріжджів становить 6 -7 м3/ч.

    Чистоту процесу вирощування дріжджів контролюють щогодини. Проби відбирають і переглядають під мікроскопом, мертві клітини красяться метиленовою синню, а живі залишаються не пофарбованими.

    При перегляді визначають кількість мертвих і клітин, що брунькуються, стосовно загальної кількості дріжджів і виражають їх у процесі. Проводять спостереження над морфологічними змінами дріжджів: визначають кількість дрібних клітин і клітин з подвійними бруньками й відзначають наявність диких дріжджів – не сахаромицетів і бактерій.

    1.4.4 Контроль живильних речовин і стимуляторів росту

    Аміак застосовують як джерело азоту й для регулювання рН середовища при вирощуванні дріжджів, а також збільшення виходу чистого білка. У виробництві використають аміак водний технічний (ДЕРЖСТАНДАРТ 9 - 57), що представляє собою розчин газоподібного аміаку у воді.

    Відсоток змісту аміаку у водяному розчині визначають по питомій вазі й титруванням. Визначають пікнометром або ареометром. При визначенні титрування 10 мол випробуваного розчину наливають за допомогою бюретки в мірну колбу ємністю 200 мол; колбу доливають до мітки дистильованої води й розчин ретельно перемішують. Потім 5 мол отриманого розчину відбирають піпеткою й переносять у колбу для титрування, розбавляють дистильованою водою до 50 мол і титрують 0,1 Н розчином Н2SО4 з індикатором метілоранжом до рожевого відтінку. Зміст аміаку:

    Суперфосфат застосовується в дріжджовому виробництві як джерело фосфору необхідного дріжджам у процесі росту. Використають водорозчинні солі фосфорної кислоти. По діючий ДСТу 8382 – 57 вологість доброякісність суперфосфату повинна бути не більше 13 %; зміст що засвоївся Р2О5 не менш 19 %. Повинен бути розсипчастим, що не злежується в щільні грудки.

    Визначення змісту фтору: наявність водорозчинного фтору пригнічуючи діє на процес розмноження дріжджів, тому контроль за дотриманням норм має велике значення. Кількість фтору в середовищі дріжджі-вирощувального апарата не повинне перевищувати 0,001 %.

    Сірчану кислоту застосовують для очищення засівних дріжджів від бактеріальної інфекції й для регулювання рН середовища при вирощуванні дріжджів. Використають сірчану кислоту акумуляторну (ДЕРЖСТАНДАРТ 667 - 53) і контрольний технічний поліпшений (ДЕРЖСТАНДАРТ 2184 - 59).

    Кукурудзяний екстракт використають у виробництві як джерело активаторів росту. По діючий ВТУ 39 - 53 (П) кукурудзяний екстракт характеризується наступними показниками. По зовнішньому вигляді - густа непрозора рідина із пластівчастою суспензією, здатної відстоюватися. Зміст сухих речовин не менш 48 %, кислотність не більше 14 %, вільного сірчистого газу стосовно сухої речовини не більше 0,5 %. Гарний екстракт дозволяє збільшити вихід на 20 - 25 %.

    1.4.5 Аналіз повітря подаваний у дріжджі-вирощувальний апарат

    Для визначення кількості МО в повітрі, що подається в дріжджі-вирощувальні апарати, рекомендується метод пропущення певної кількості повітря через стерильну воду й потім посів цієї води в чашки Петрі для кількісного визначення МО, затриманих з повітря.

    Для здійснення цього аналізу необхідний прилад, що складається з реометра й склянки Дрекселя із що приводить і відвідною трубками.

    Реометр можна використати будь-якої марки, здатний пропускати 100 - 200 л повітря за 10 - 15 хв.

    Якщо повітря, що вдмухує в апарати, добре очищений, то в ньому не повинне втримуватися ні цвілів, ні сторонніх дріжджових грибків. [17].

    1.5 Біохімічні і мікробіологічні процеси одержання протеїну

    Метаболізмом називається вся сума цілеспрямованих реакцій, що протікають під дією ферментних систем клітини, які регулюються різними зовнішніми й внутрішніми факторами. Метаболізм забезпечує всі життєві процеси в клітині залежно від середовища перебування. У результаті метаболізму відбувається збільшення розмірів клітини, її розподіл або брунькування, зростає кількість особин і загальної їхньої маси в живильному , середовищі з якої споживається частина її компонентів й яка поповнюється метаболітами клітини.

    Незважаючи на величезні фізіологічні й морфологічні розходження між окремими класами, родами й видами МО, обмін речовин у клітині йде трьома центральними метаболічними шляхами:

    1) із зовнішнього середовища в клітину надходить енергія або у вигляді хімічної енергії органічних речовин, або у вигляді енергії сонячного світла;

    2) з речовин середовища, перенесених у клітину, збираються “будівельні блоки”, які формують біополімери клітини й синтезують макромолекули білків, нуклеїнових кислот, вуглеводів, жирів й інших клітинних компонентів;

    3) у клітині відбуваються постійні синтез і руйнування біомолекул, що виконують різні специфічні функції.

    Принципові основи центральних метаболічних шляхів простежити й зрозуміти порівняно легко, хоча кожний із цих шляхів являє собою безліч різних простих і складних реакцій, частина з яких поки ще до кінця не розшифрована.

    Обмін речовин у МО можна розглядати як суму 2 явищ: катаболізму представляють собою ферментативне розщеплення великих органічних молекул з виділенням вільної енергії, що запасається у вигляді зв'язків в АТФ, і анаболізму, пов'язаного з побудовою нових біополімерів клітини із простих з'єднань й, що протікає з поглинанням енергії зв'язків АТФ. У результаті цих двох паралельно поточних процесів будується “тіло” клітини, накопичуються необхідні клітинам запасні речовини, біологічні каталізатори й проміжні продукти обміну речовин.

    Таким чином, обмін речовин складається в клітині з конструктивного й енергетичного обмінів.

    Катаболізм й анаболізм - два самостійних шляхи в обміні речовин, але окремі їхні ділянки можуть бути загальними.

    Швидкість плину реакцій, що беруть участь в обміні речовин клітини, залежить від складу живильного , середовища умов культивування й віку МО й, головне, від потреби клітини в кожен момент в енергії й будівельних блоках. Ріст клітин може протікати аеробним й анаеробним шляхом. Інтенсивний обмін речовин між клітиною й середовищем забезпечується великою поверхнею тіла МО, через яку відбувається надходження живильних речовин і виділення в навколишнє середовище продуктів життєдіяльності клітини. На метаболізм клітини впливають середовища, що змінюється значення рн, концентрація субстрату, рівень метаболітів у середовищі й багато інших факторів [21].

    1.6 Технологічна схема одержання протеїну

    Стадія процесу по вирощювання кормових дріжджів здійснюється в ферментаторі обсягом 12 – 15 м3. Апарат на 10 % заповнюють стерильною або прокип'яченою водою, уводять близько 0,5 м3 середовища й перекачують уміст попереднього апарата (2,5 – 2,7 м3). Вирощування посівного матеріалу триває 8 – 9 ч при постійному доливі середовища з розрахунку близько 1,5 – 1,7 м3 за один цикл. До кінця циклу дріжджів у середовищі повинне втримуватися 4 – 5 г/л (по сухій масі). Потім починають відбирати в основне виробництво по 1 – 1,5 м3 дріжджів у годину, додаючи одночасно свіже середовище зі змістом РВ 1 – 1,2 %. Процес триває від 5 до 10 год, після чого цикл готування посівного матеріалу відновляється.

    На початку кожного циклу в лабораторії відбирають варіанти культури дріжджів, які дали найкращі результати по нагромадженню білка й швидкості росту в основному виробництві.

    Готові кормові дріжджі завантажуються у ферментатор об’ємом 63 м3. Добавляють молочну сироватку, мінеральні солі, а також кукурудзяний екстракт. Також у ферментатор подавали повітря. Процес проходить при тиску 50 кПа та t стерилізації 130 – 140 °С.. Після цього продукт йшов на випарювання, а від сепарована рідина йшла на очищення. Потім проводили випарювання на вакуумним випаром апараті (55 – 60 °С і тиску 15 кПа) за допомогою пару и висушували на сушарці за допомогою гарячого повітря. Таким чином отримали повноцінний білок.


    2. Вибір і обґрунтування

    2.1 Вибір ферментатора

    Ферментатор обсягом 63 м3. Ферментатор цього типу являє собою вертикальний апарат циліндричної форми, виготовлений зі сталі X18H10T або біметалу з еліптичними кришкою й днищем. Даний тип ферментатора простий по своїй конструкції й працює тільки в стерильних умовах, тому для одержання білка цілком придатний. Відношення висоти до діаметра дорівнює 2,6 : 1. На кришці апарата розташований привід пристрою, що перемішує, і механічного піногасника; штуцера для завантаження живильного, середовища посівного матеріалу, піногасника, подачі й висновку повітря; оглядові вікна; люки для занурення миючої механічної голівки; запобіжний клапан і штуцера для приладів візуального контролю.

    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.