МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Проблема сохранения биологического разнообразия

    Основными видами  морфоструктур, формирующихся в пределах геотектуры Большого Кавказа могут называться:

    1) водораздельные хребты субширотных склонов северной экспозиции высокогорий Главного Кавказского хребта с карлингами и перевалами.

    2) троговые долины Южно-Юрской субширотной депрессии (Домбайская, Софийская), которая отделяет Главный хребет от Бокового хребта.

    3) троговые меридиональные эрозионно-тектонические долины рек Теберды, Кизгича, Софии и другие в пределах Бокового хребта.

    4) южные крутые и обрывистые склоны Передового хребта и Архызско-Загеданская депрессия с субширотными долинами рек, отделяющая Боковой хребет от Передового хребта.

    5) эрозионно-тектонические долины рек меридионального простирания, разделяющие блоки Передового хребта.

    6) склоны осевых хребтов разных экспозиций высокогорий Бокового хребта и Передового хребтов.

    В пределах этих типов морфоструктур формируются морфоскульптуры, среди которых широко распространены формы ледникового происхождения: цирки, кары, карлинги, морены – боковые и конечные, озерные четки и др. Достаточно широко распространены эрозионно-аккумулятивные формы рельефа – коллювиальные склоны притоков вторичных и третичных долин, речные террасы, эрозионные борозды, конуса выносов. Встречаются коллювиально-пролювиальные формы рельефа – конуса выноса селевых потоков и карстовые формы рельефа типичные для Передового хребта, например, карстовые озера.


    2.2. Климатогенный фактор

    На климатические условия Западного Кавказа влияют географическое положение, особенности рельефа и циркуляция атмосферы. Участок расположен на юге умеренных широт на границе с субтропическими широтами (Асланикашвили, Мамулян, 1990). Климат влажный, относительно солнечный и теплый, так как осуществляется средиземноморский циклогенез. В холодное полугодие количество осадков велико. На высоте около 2000м за год выпадает 2600 мм. (Темникова, 1959). На территории Западного Кавказа преобладает юго-западный перенос общей циркуляции. Он для северных склонов Передового хребта и Южно-Юрской депрессии приносит основную массу осадков.  В годовом и суточном ходе различных метеорологических элементов происходят резкие изменения, определяемые взаимодействием свободной атмосферы с увеличением высоты. Характер изменения температуры с высотой не зависит от сезона: количество осадков растет с высотой (Кавказ, 1966). В общем, для высокогорных районов характерен  высокий приток суммарной солнечной радиации. Но от среднегорий к высокогорьям наблюдается уменьшение радиационного баланса, в связи с повышением эффективного излучения с высотой. Наблюдается общее возрастание засушливости с запада на восток.

    Имеющаяся на территории исследования метеостанция «Клухорский перевал» на высоте 2037м над у.м., располагает данными, которые помогут оценить изменения климатических параметров за с 1960 по 2004 гг. (таблица 1). Для анализа была выбрана эта метеостанция потому, что она расположена в типичной зоне экотона субальпики. Нами при изучении участков исследования было проанализировано изменение годовых температур в период по данным метеостанции.

    Таблица 1.

    Температура воздуха за период 1960-2004 гг. по метеостанции «Клухорский перевал», ºС (Братков, 2005)

     

    196     1960-2004гг.

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Год

    Tmin.

    -10,1

    -9,6

    -6,2

    0,0

    4,5

    8,4

    10,6

    9,5

    6,3

    0,5

    -4,3

    -7,4

    2,1

    Tmax.

    -0,2

    4,2

    2,8

    8,5

    9,5

    14,4

    17,3

    16,3

    12,5

    10,1

    5,7

    3,9

    5,9

    Tср.

    -5,0

    -4,6

    -1,8

    3,0

    7,0

    10,3

    13,2

    12,7

    6,3

    5,3

    0,6

    -2,5

    4,0


    Минимальная температура воздуха составила 2,1ºС в 1992 г., а максимальная – 5,9ºС в 1971 г. Если сравнивать тенденции изменения температуры по периодам, то c 1960-х гг. до 1990-х гг. колебания осуществлялись в диапазоне 4ºС. В начале 90-х гг. диапазон колебаний средних температур составил 3ºС, а с конца 90-х гг. снова наблюдается повышение показателей         до 4,2ºС-4,3ºС. Отмечается несовпадение данных по многолетним наблюдениям: при увеличении температуры за указанный период наблюдений выявляется, наоборот, падение температуры. Данный факт можно объяснить тем, что в начале 90-х годов отмечались минимальные температуры за весь анализируемый срок наблюдений. Кроме того, примерно до середины 70-х годов амплитуда колебания температуры воздуха была гораздо более существенна, по сравнению со следующим периодом (Братков и др., 2005).

    Отрицательные минимальные температуры характерны для пяти месяцев в году, начиная уже с ноября, и, соответственно, самая низкая температура бывает в январе -10,1ºС. Отрицательные максимальные температуры характерны только для января. В последующие месяцы рост показателей осуществляется примерно с разницей в два раза. Положительные максимальные температуры актуальны для трех летних месяцев и колеблются от 14,4ºС до 17,3ºС.

    Для средних температур динамика показателей изменяется примерно в два раза. Отрицательные средние показатели характерны для четырех месяцев  - декабрь, январь, февраль и даже март, причем низкий показатель встречается в январе, а немного «повыше», соответственно, в марте. Такие температурные вариации сокращают вегетационный период развития растительности и активный образ жизни беспозвоночных. Максимальные показатели средних температур выделяются в летние месяцы и диапазон колебаний составляет от 10,3ºС до 13,2ºС. Именно этот промежуток времени и характеризуется активизацией процессов жизнедеятельности беспозвоночных.

    Наглядно динамику общих макроклиматических показателей можно проанализировать на примере метеоэлементов хребта Малая Хатипара.

    Значительные колебания относительных высот в пределах хребта обусловили формирование вертикальных различий климата, растительности, почв и животного мира. При рассмотрении основных показателей метеоэлементов   климата    (таблица 2) —радиационного баланса, затрат тепла на испарение, индекса сухости, испаряемости — отмечается общая тенденция снижения показателей с высотой. Средние июльские   температуры снижаются на 0,5° на каждые 100м, средние годовые - на 0,4°, радиационный баланс — на 0,7 ккал/см2, затраты тепла на испарение — на 0,19 ккал/см2, затраты тепла на нагревание - на 0,5 ккал/см2 на 100м. В то же время количество осадков и величина коэффициента увлажнения растут с высотой. Количество осадков возрастает на 64 мм на каждые 100 м, величина коэффициента увлажнения — на 0,4.

    Составляющие теплового баланса с высотой меняются одинаково. Затраты тепла на испарение по всему профилю хребта изменяются мало, чего нельзя сказать о затратах тепла на нагревание. Годовые величины последних с высотой быстро уменьшаются. В данном случае показателен коэффициент отношения затрат тепла на испарение к затратам тепла на нагревание (LE/P). В долине Теберды величины LE и Р почти одинаковы, и коэффициент равняется 1,27. В пределах лугового пояса его величины возрастают до 2,0—2,13.

    Уменьшение затрат тепла на нагревание с высотой сказывается на температурном режиме воздуха и характере испаряемости. В поясе луговых ассоциаций средние годовые температуры уже ниже нуля. Величины испаряемости не   превышают 300мм, поэтому коэффициент увлажнения растет с 1,3 в долине Теберды до 4,8—5,8 в поясе луговых ассоциаций. Подобных значений коэффициента увлажнения у природных зон равнин умеренных широт не наблюдается (Шальнев, 1973).

    При сравнении показателей таблицы 2 от подножия (1340м) к субальпийским лугам на высоте 2500м. над у.м., выявлено, что основные показатели метеоэлементов весьма высоки для станции 1, а на второй станции наблюдается спад показателей. От этой станции вполне упорядоченно возрастают метеоэлементы к типичной субальпике. Максимальные показатели температур характерны для высоты в 1340м, потом резкое падение для июльских температур на 4,3ºС, а для годовой – 1,9ºС и более плавное понижение, в результате которого годовая температура и температура воздуха в июле понижается на 0,6-1,0ºС, а годовая температура в диапазоне высот 2350-2500м даже понижается на 1,9ºС. При такой динамике температур минимальное количество осадков выпадает в хвойно-широколиственных лесах – 763 мм, затем повышается количество осадков, причем на 479 мм и на верхней границе пихтово-сосновых лесов составляет 1410 мм. А к субальпийским лугам количество осадков увеличивается плавно – на 84-168 мм. Но при таком росте количества осадков, влажность воздуха с высотой уменьшается: минимальная на станции 4 (68 мм), а максимальная – на станции 1 (76 мм). Радиационный баланс с высотой уменьшается от 38,0 ккал/см2 до 30,1 ккал/см2, причем разница между первыми двумя станциями составляет 6,9 ккал/см2. Расходная часть радиационного баланса, которая тратится на затраты тепла на испарение (LE) и турбулентный поток тепла в воздух (P). Вполне последовательно понижается показатели на испарение от 1340 м до 2500 м над у.м., с разницей 0,1 ккал/см2. Показатели P сначала понижаются на 6,3 ккал/см2, затем не изменяются на уровне высот 2050 м. и 2350 м и составляют 10,2 ккал/см2. На станции 4 показатель турбулентного потока тепла в воздух составляет всего лишь 10,2 ккал/см2. Затраты на испаряемость закономерно снижаются с 430 мм до 312 мм., это объясняется тем, что луговые ассоциации являются «открытым» участком, лишенным древесной и кустарниковой растительности. Соответственно, расходная часть радиационного баланса от леса к лугу возрастает.

    При сравнении березовых криволесий и сосновых редколесий с типично субальпийскими лугами при разнице высот в 150м наблюдается снижение средней июльской и годовой температур на 1º и 1,5°, соответственно, и уменьшается влажность воздуха на 6%. При этом, от станции 3 к станции 4 возрастает количество осадков на 84 мм., то и радиационный баланс, затраты тепла на испарение и турбулентный поток тепла в воздух также возрастает, но незначительно на 0,1 ккал/см2 , 0,7 ккал/см2  и 0,2 ккал/см2 , соответственно. Испаряемость уменьшается на 10 мм, а значит и коэффициент сухости – на 0,3. Коэффициент увлажнения, наоборот, возрастает на 0,4. Так как, возрастание радиационного баланса параллельно ведет к нарастанию и эффективного излучения.





    Таблица 2.

    Изменение основных показателей метеоэлементов климата

    по восточному профилю хребта Малая Хатипара (Шальнев, 1968-1975).

     

    Станции

    Абс.

    высоты  в м.

    Температура

    воздуха

    Осадки за год в мм.

    Влажность

    воздуха

    Ккал./см²

    Кс

    Кв

    LE/P

    Испаряе-мость в мм.

    июль

    годо-

    вая

    %

    мб.

    R

    LE

    P

    Станция 1 (пояс хвойно-широколиственных лесов)

    1340

    15,6

    6,3

    763

    70

    6,7

    38,0

    21,3

    16,7

       0,83

        1,3

           1,27

    430

    Станция 2 (верхняя граница пихтово-сосновых  лесов)

    2050

    11,2

    3,4

    1242

    76

    5,9

    31,1

    20,7

    10,4

          0,42

       3    3,55

            1,98

    350

    Станция 3 (березовое криволесье, сосновые редколесья и субальпийские луга)

    2350

    10,6

    2,7

    1410

    74

    5,5

    31,0

    20,6

    10,4

           0,37

           4,4

            1,96

    322

    Станция 4 (субальпийские луга)

    2500

    9,6

    0,8

    1494

    68

    4,4

    30,1

    19,9

    10,2

           0,34

           4,8

           1,95

    312


    Примечание: R – радиационный баланс, LE – затраты тепла на испарение, P – турбулентный поток тепла в воздух, Кс – коэффициент сухости, Кв – коэффициент увлажнения.


    При сравнении средних температурных показателей за 44 года (Братков, 2005) и за 7 лет (Шальнев, 1973) выявлено, что за многолетний период изменения составляли около 4ºС на уровне 2037 м, а за семилетний промежуток на высотах от 1340м до 2350м над у.м. диапазон колебаний составлял 0,3-0,4ºС. Среднегодовая температура на лугу в типичной субальпике (2500м) достигла 2ºС. За более короткий временной промежуток времени градиент колебаний будет более сглаженный, чем за почти полувековой период, причем  показатели, безусловно, усреднены, а общий анализ дан выше.

    Еще одним показателем, характеризующим климатическую обстановку Западного Кавказа является количество осадков. Также можно проанализировать изменение величины годовых осадков на метеостанции «Клухорскиий перевал» за  период 1960-2004 гг. (таблица 3), для получения многолетних показателей. По сравнению с предшествующим периодом годовое количество осадков увеличилось на 23 мм, что при средней величине около 1800 мм не существенно, однако сезонные изменения довольно весомы. Заметна хорошо выраженная тенденция увеличения осадков в холодный период при их сокращении в теплый период года. При этом в процентном исчислении, например, в январе количество осадков увеличилось на 42%, тогда как в мае они уменьшились на 35%.


    Таблица 3.

    Осадки за период 1960-2004 гг. по метеостанции «Клухорский перевал»,

    в мм  (Братков, 2005).

     

    1960-2004гг.

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    Год

    Осадкиmin.

    10

    3

    4

    81

    22

    51

    32

    28

    39

    24

    21

    10

    1301

    Осадкиmax.

    498

    305

    378

    342

    290

    346

    277

    259

    425

    563

    439

    440

    2377

    Осадкиср.

    151

    104

    119

    164

    144

    149

    137

    142

    1581

    196

    177

    163

    1798

     

    Минимальное количество осадков составляет 1301 мм в 1984 г., а максимальное – 2377 мм в 2001 г. Если сравнивать тенденции изменения осадков последовательно, то с 1960-х гг. их величина составляла 1718 мм, и до 1980-х гг. возрастает – 1763 мм,  а в 80-ые гг. резко уменьшается – до 1575 мм. Но от 90 гг. к 2004 г. опять увеличивается среднегодовое количество осадков и составляет уже 2102 мм. Величина гидротермического коэффициента  за период 1960-2004 гг. составила 3,82, т.е. уменьшилась с 4,6. Причем, гидротермический коэффициент представляет собой отношение суммы осадков за период с температурой выше +10º к сумме температур за тот же период. Величина коэффициента увлажнения, наоборот, несколько увеличилась: 3,52 вместо 3,40. А коэффициент увлажнения представляет собой отношение количества осадков к испаряемости за тот же период (Братков и др., 2005).

    Страницы: 1, 2, 3, 4, 5, 6, 7


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.