МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Экологические основы устойчивости растений


    Способы повышения холодостойкости некоторых растений.

    Хо­лодостойкость некоторых теплолюбивых растений можно повы­сить закаливанием прорастающих семян и рассады, которое сти­мулирует защитно-приспособительную перестройку метаболизма растений. Наклюнувшиеся семена или рассаду теплолюбивых культур (огурец, томат, дыня и др.) в течение нескольких суток (до месяца) выдерживают при чередующихся (через 12 ч) пере­менных температурах: от 0 до 5 °С и при 15—20 оС. Холодостой­кость ряда растений повышается при замачивании семян в 0,25%-ных растворах микроэлементов.

    Повысить холодостойкость растений можно прививкой тепло­любивых растений (арбуз, дыня) на более холодоустойчивые под­вои (тыква). Положительное влияние этих приемов связано со стабилизацией энергетического обмена и упрочением структуры клеточных органоидов у обработанных растений. У закаленных растений увеличение вязкости протоплазмы при пониженных температурах происходит медленнее.

    Заморозки. Большой ущерб сельскому хозяйству наносят крат­ковременные или длительные заморозки, отмечаемые в весенний и осенний периоды, а в северных широтах и летом. Заморозки — снижение температуры до небольших отрицательных величин, могут быть во время разных фаз развития конкретных растений. Наиболее опасны летние заморозки, в период наибольшего роста растений. Устойчивость к заморозкам обусловлена видом расте­ния, фазой его развития, физиологическим состоянием, условия­ми минерального питания, увлажненностью, интенсивностью и продолжительностью заморозков, погодными условиями, пред­шествующими заморозкам.

    Наиболее устойчивы к заморозкам растения раннего срока посева (яровые хлеба, зернобобовые культуры), способные вы­держивать в ранние фазы онтогенеза кратковременные весенние заморозки до —7...-10 оС. Растения позднего срока посева раз­виваются медленнее и не всегда успевают подготовиться к низким температурам. Корнеплоды, большинство масличных культур, лен, конопля переносят понижение температуры до —5...—8 °С, соя, картофель, сорго, кукуруза — до —2...—3, хло­пок—до -1,5...-2, бахчевые культуры — до -0,5...-1,5 оС.

    Существенную роль в устойчивости к заморозкам играет фаза развития растений. Особенно опасны заморозки в фазе цвете­ние — начало плодоношения. Яровые хлеба в фазе всходов пере­носят заморозки до -7...-8 оС, в фазе выхода в трубку до -3, а в фазе цветения — только 1—2 оС. Устойчивость растений зави­сит от образования при заморозках льда в клетках и межклеточ­никах. Если лед не образуется, то вероятность восстановления растением нормального течения функций возрастает. Поэтому первостепенное значение имеет возможность быстрого транспор­та свободной воды из клеток в межклеточники, что определяется

    высокой проницаемостью мембран в условиях заморозков. У устойчивых к заморозкам культур при снижении температур в составе липидов клеточных мембран увеличивается содержание ненасыщенных жирных кислот, снижающих температуру фазово­го перехода липидов из жидкокристаллического состояния в гель до уровня О оС. У неустойчивых растений этот переход имеет место при температурах выше О °С. В целях максимального сни­жения повреждения растений заморозками необходимо прово­дить посев их в оптимальные сроки, использовать рассаду овощ­ных и цветочных культур. Защищают от заморозков дымовые завесы и укрытие растений пленкой, дождевание растений перед заморозками или весенний полив. Для вертикального перемеще­ния воздуха около плодовых деревьев используют вентиляторы.

    МОРОЗОУСТОЙЧИВОСТЬ РАСТЕНИЙ

    Морозоустойчивостьспособность растений переносить тем­пературу ниже О °С, низкие отрицательные температуры. Моро­зоустойчивые растения способны предотвращать или уменьшать действие низких отрицательных температур. Морозы в зимний период с температурой ниже —20 °С обычны для значительной части территории России. Воздействию морозов подвергаются однолетние, двулетние и многолетние растения. Растения пере­носят условия зимы в различные периоды онтогенеза. У однолет­них культур зимуют семена (яровые растения), раскустившиеся растения (озимые), у двулетних и многолетних — клубни, корне­плоды, луковицы, корневища, взрослые растения. Способность озимых, многолетних травянистых и древесных плодовых куль­тур перезимовывать обусловливается их достаточно высокой мо­розоустойчивостью. Ткани этих растений могут замерзать, одна­ко растения не погибают. Большой вклад в изучение физиологи­ческих основ морозоустойчивости внесли Н. А. Максимов (1952), Г. А. Самыгин (1974), И. И. Туманов (1979) и другие оте­чественные исследователи.

    Замерзание растительных клеток и тканей и происходящие при этом процессы.

    Способность растений переносить отрицательные температуры определяется наследственной основой данного вида растений, однако морозоустойчивость одного и того же растения зависит от условий, предшествующих наступлению морозов, вли­яющих на характер льдообразования. Лед может образовываться как в протопласте клетки, так и в межклеточном пространстве. Не всякое образование льда приводит клетки растения к гибели.

    Постепенное снижение температуры со скоростью 0,5—1 °С/ч приводит к образованию кристаллов льда прежде всего в меж­клеточниках и первоначально не вызывают гибели клеток. Одна­ко последствия этого процесса могут быть губительными для

    клетки. Образование льда в протопласте клетки, как правило, происходит при быстром понижении температуры. Происходит коагуляция белков протоплазмы, кристаллами образовавшегося в цитозоле льда повреждаются клеточные структуры, клетки поги­бают. Убитые морозом растения после оттаивания теряют тургор, из их мясистых тканей вытекает вода.

    Условия и причины вымерзания растений.

    Образующийся при медленном промерзании в межклеточниках и клеточных стенках лед оттягивает воду из клеток; клеточный сок становится кон­центрированным, изменяется рН среды. Выкристаллизовавший­ся лед действует как сухой воздух, иссушая клетки и сильно изменяя их осмотические свойства. Кроме того, цитоплазма под­вергается сжатию кристаллами льда. Образующиеся кристаллы льда вытесняют воздух из межклеточников, поэтому замерзшие листья становятся прозрачными.

    Если льда образуется немного и клетки не были механически повреждены его кристаллами, то при последующем оттаивании такие растения могут сохранить жизнеспособность. Так, в лис­тьях капусты при температуре —5...—6 оС образуется некоторое количество льда в межклеточниках. Однако при последующем медленном оттаивании межклеточники заполняются водой, ко­торая поглощается клетками, и листья возвращаются в нормаль­ное состояние.

    Однако клетки, ткани и растения могут погибнуть от мороза. Основными причинами гибели клеток растений при низких от­рицательных температурах и льдообразовании являются чрезмер­ное обезвоживание клеток или механическое давление, сжатие клеток кристаллами льда, повреждающее тонкие клеточные структуры. Оба эти фактора могут действовать одновременно. Летальность действия мороза определяется несколькими обстоя­тельствами. Последствия воздействия низких отрицательных тем­ператур зависят от оводненности тканей растения. Насыщенные водой ткани легко повреждаются, сухие же семена могут выно­сить глубокие низкие температуры (до —196 °С). Низкое содер­жание воды предохраняет от образования льда в растениях при промораживании. Разные растения, их клетки имеют свой кри­тический предел обезвоживания и сжатия, превышение которо­го, а не только снижение температуры приводит к их гибели.

    Гибель клеток, тканей и растений под действием морозов обусловливается необратимыми изменениями, происходящими в протопласте клеток: его коагуляцией, денатурацией коллоидов протопласта, механическим давлением льда, повреждающим по­верхностные структуры цитоплазмы, кристаллами льда, наруша­ющими мембраны и проникающими внутрь клетки. Вредное влияние оказывает повышение концентрации и изменение рН клеточного сока, сопровождающие обезвоживание клеток.

    Действие льда,   особенно  при длительном  влиянии   низких

    температур, сходно с обезвоживанием клеток при засухе. При­знаками повреждения клеток морозом являются потеря ими тур-гора, инфильтрация межклеточников водой и выход ионов из клеток. Выход ионов К+ и Сахаров из клеток, по-видимому, связан с повреждением мембранных систем их активного транс­порта. Поврежденные растения при переносе в теплое место имеют вид ошпаренных, утрачивают тургор, листья быстро буре­ют и засыхают. При оттаивании мороженых клубней картофеля, корнеплодов кормовой и сахарной свеклы вода легко вытекает из тканей. Важно отметить, что состояние переохлаждения (без об­разования льда) растения переносят без вреда; при тех же темпе­ратурах, но с образованием льда в тканях растения гибнут.

    Растения по-разному реагируют на образование льда в тканях: клубни картофеля и георгина быстро погибают, капуста и лук переносят лишь умеренное промораживание, рожь и пшеница выдерживают на уровне узла кущения морозы до —15...—20 °С. У устойчивых к морозу растений имеются защитные механизмы, в основе которых лежат определенные физико-химические изме­нения. Морозоустойчивые растения обладают приспособления­ми, уменьшающими обезвоживание клеток. При понижении температуры у таких растений отмечаются повышение содержа­ния Сахаров и других веществ, защищающих ткани (криопротек-торы), это прежде всего гидрофильные белки, моно- и олигоса-хариды; снижение оводненности клеток; увеличение количества полярных липидов и снижение насыщенности их жирнокислот-ных остатков; увеличение количества защитных белков.

    На степень морозоустойчивости растений большое влияние оказывают сахара, регуляторы роста и другие вещества, образую­щиеся в клетках. В зимующих растениях в цитоплазме накапли­ваются сахара, а содержание крахмала снижается. Влияние саха-ров на повышение морозоустойчивости растений многосторонне. Накопление Сахаров предохраняет от замерзания большой объем внутриклеточной воды, заметно уменьшает количество образую­щегося льда.

    Сахара защищают белковые соединения от коагуляции при вымораживании; они образуют гидрофильные связи с белками цитоплазмы, предохраняя их от возможной денатурации, повы­шают осмотическое давление и снижают температуру замерзания цитозоля. В результате накопления Сахаров содержание прочнос-вязанной воды увеличивается, а свободной уменьшается. Особое значение имеет защитное влияние Сахаров на белки, сосредото­ченные в поверхностных мембранах клетки. Сахара увеличивают водоудерживающую способность коллоидов протоплазмы клеток; связанная с коллоидами вода в виде гидратных оболочек био­полимеров при низких, температурах не замерзает и не транспор­тируется, оставаясь в клетке.

    Криопротекторами являются также молекулы  гемицеллюлоз

    (ксиланы, арабиноксиланы), выделяемые цитоплазмой в клеточ­ную стенку, обволакивающие растущие кристаллы льда, что предотвращает образование крупных кристаллов, повреждающих клетку. Так клетки защищаются как от внутриклеточного льда, так и от чрезмерного обезвоживания. Значительное количество защитных белков и модификации молекул липидов увеличивают структурированность клеток. У большинства растений возрастает синтез водорастворимых белков. Белковые вещества, частично гидролизуясь, увеличивают содержание свободных аминокислот. В тканях морозоустойчивых растений в конце лета и осенью накапливаются в достаточном количестве запасные вещества (прежде всего сахара), которые используются весной при возоб­новлении роста, обеспечивая потребности растений в строитель­ном материале и энергии. Необходимо также учитывать устойчи­вость растений к болезням, вероятность развития которых увели­чивается при повреждении тканей морозом.

    Закаливание растений.

    Морозоустойчивость — не постоянное свойство растений. Она зависит от физиологическо­го состояния растений и условий внешней среды. Растения, выращенные при относительно низких положительных темпера­турах, более устойчивы, чем выращенные при относительно вы­соких осенних температурах. Свойство морозоустойчивости фор­мируется в процессе онтогенеза растения под влиянием опреде­ленных условий среды в соответствии с генотипом растения, связано с резким снижением темпов роста, переходом растения в состояние покоя.

    Жизненный цикл развития озимых, двуручек, двулетних и многолетних растений контролируется сезонным ритмом свето­вого и температурного периодов. В отличие от яровых однолет­них растений они начинают готовиться к перенесению неблаго­приятных зимних условий с момента остановки роста и затем в течение осени во время наступления пониженных температур.

    Повышение морозоустойчивости растений тесно связано с закаливанием — постепенной подготовкой растений к воздейст­вию низких зимних температур. Закаливание — это обратимая физиологическая устойчивость к неблагоприятным воздействиям среды.

    Способностью к закаливанию обладают не все растения. Рас­тения южного происхождения не способны переносить морозы. Способность к закаливанию у древесных и зимующих травянис­тых растений северных широт, переживающих значительное по­нижение температуры в зимний период, в период летней вегета­ции отсутствует и проявляется только во время наступления осенних пониженных температур (если растение к этому време­ни прошло необходимый цикл развития). Процесс закалки при­урочен лишь к определенным этапам развития растений. Для

    приобретения способности к закаливанию растения должны за­кончить процессы роста.

    Разные органы растений имеют неодинаковую способность к закаливанию, например, листья листопадных деревьев (яблоня, груша, вишня) не обладают способностью к закаливанию; цве­точные почки закаливаются хуже, чем листовые. У вегетирующих растений легко вымерзают растущие и не закончившие рост органы. Выносливость растений к низким температурам в этот период незначительная.

    Эффект закаливания может не проявиться, если по каким-либо причинам (засуха, поздний посев, посадки и др.) произо­шла задержка развития растений. Так, если в течение лета у плодовых растений процессы роста из-за летней засухи не успе­ли закончиться, то зимой это может привести к гибели растений. Дело в том, что засуха, приостанавливая рост летом, не позволя­ет растениям завершить его к осени. Одновременно при закалке должен произойти отток различных веществ из надземных орга­нов в подземные зимующие (корневые системы, корневища, лу­ковицы, клубни). По этой же причине закалку травянистых и древесных растений ухудшает избыточное азотное питание, удли­няющее период роста до поздней осени, в результате растения не способны пройти процессы закаливания и гибнут даже при не­больших морозах.

    Яровые злаки при озимом посеве по сравнению с озимыми растут при более пониженных положительных температурах, в осенний период почти не снижают темпов роста и не способны к закаливанию. Большую роль в закаливании играют условия внеш­ней среды. Так, на озимых культурах убедительно показана необхо­димость света для процесса закаливания. Сокращение фотопериода служит для растений сигналом к прекращению роста и стимулом для накопления ингибиторов в растениях. Вероятно, с этих процес­сов начинается формирование морозоустойчивости у растений.

    Растения, выращенные при несоответствующем фотопериоде, не успевают завершить летний рост и не способны к закаливанию. Установлено, что длинный день способствует образованию в лис­тьях черной смородины фитогормонов стимуляторов роста, а ко­роткий — накоплению ингибиторов. В естественных условиях к закаливанию способен лишь организм в целом, при обязательном наличии корневой системы. По-видимому, в корнях вырабатыва­ются вещества, повышающие устойчивость растения к морозу.

    Фазы закаливания.

    По И. И. Туманову (1979), процесс зака­ливания растений требует определенного комплекса внешних ус­ловий и проходит в две фазы, которым предшествуют замедление роста и переход растений в состояние покоя. Прекращение роста и переход в состояние покоя — необходимые условия прохожде­ния первой фазы закаливания. Однако само по себе оно лишь немного повышает морозоустойчивость растения. У травянистых

    растений переход в состояние покоя происходит в период первой фазы закаливания. У древесных покой наступает в начале осени, до прохождения первой фазы закаливания.

    При переходе в состояние покоя изменяется баланс фитогормо-нов: уменьшается содержание ауксина и гиббереллинов и увеличи­вается содержание абсцизовой кислоты, которая, ослабляя и инги-бируя ростовые процессы, обусловливает наступление периода покоя. Поэтому обработка растений озимой пшеницы, люцерны и других культур в этот период ингибиторами роста (например, хлор-холинхлоридом — ССС или трииодбензойной кислотой) повышает устойчивость растений к низким температурам.

    Первая фаза закаливания проходит на свету и при низких положительных температурах в ночное время (днем около 10 °С, ночью около 2 °С), останавливающих рост, и умеренной влаж­ности почвы. Озимые злаки проходят первую фазу на свету при среднесуточной температуре 0,5—2 °С за 6—9 дней, древесные — за 30 дней. В эту фазу продолжается дальнейшее замедление и даже происходит полная остановка ростовых процессов.

    Свет в этой фазе необходим не только для фотосинтеза, но и для поддержания ультраструктур клетки. В таких условиях за счет фотосинтеза образуются сахара, а понижение температуры в ночное время значительно снижает их расход на дыхание и процессы роста. В результате в клетках растений накапливаются сахароза, другие олигосахариды, растворимые белки и т. д., в мембранах возрастает содержание ненасыщенных жирных кис­лот, снижается точка замерзания цитоплазмы, отмечается неко­торое уменьшение внутриклеточной воды.

    Благоприятные условия для прохождения первой фазы зака­ливания озимых растений складываются при солнечной и про­хладной (дневная температура до 10 °С) погоде, способствующей накоплению в тканях растений углеводов и других защитных веществ. В естественных условиях оптимальный срок первой фазы закаливания озимых злаков до двух недель. За это время количество сахаров в растениях возрастает до 70 % на сухую массу или до 22 % на сырую массу, т. е. близко содержанию Сахаров в корнеплодах лучших сортов сахарной свеклы.

    Растения озимой пшеницы можно закалить и в темноте при 2 °С, если их корни или узлы кущения погрузить в раствор сахарозы. Такие растения выдерживают морозы до —20 °С (И. И. Туманов, 1979). Накапливающиеся в процессе закалива­ния сахара локализуются в клеточном соке, цитоплазме, клеточ­ных органеллах, особенно в хлоропластах. При закаливании рас­тений высокоморозоустойчивого сорта озимой пшеницы при температуре, близкой к О °С, количество Сахаров в хлоропластах листьев увеличивалось в 2,5 раза, благодаря чему хлоропласты продолжали функционировать. Повышение содержания сахаров в хлоропластах коррелирует с морозоустойчивостью растений.

    В хлоропластах содержатся те же формы сахаров, что и в листьях: фруктоза, глюкоза, сахароза, олигосахара (Т. И. Труно­ва, 1970). Имеются данные, что при накоплении сахаров процесс фотофосфорилирования продолжается даже при отрицательных температурах. Более морозоустойчивые виды и сорта растений лучше накапливают сахар именно при сочетании пониженной температуры и умеренной влажности почвы. Дело в том, что в первой фазе закаливания происходит уменьшение содержания свободной воды, а излишняя влажность почвы при дождливой осени затрудняет этот процесс, повышается вероятность в после­дующем образования внутриклеточного льда и гибели растений.

    Страницы: 1, 2, 3, 4, 5, 6, 7


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.