МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Аккумулирование радионуклидов растениями лесных фитоценозов

    Аккумулирование радионуклидов растениями лесных фитоценозов

    РЕФЕРАТ

    курсовой работы

    «АККУМУЛИРОВАНИЕ РАДИОНУКЛИДОВ РАСТЕНИЯМИ ЛЕСНЫХ ФИТОЦЕНОЗОВ»


    ОБЪЕМ РАБОТЫ: общий объем работы составляет 30 печатных страниц, содержит 4 таблицы, список использованных источников составляет 11 наименований.

    Работа состоит из введения, теоретических частей, заключения, списка использованных источников.

    КЛЮЧЕВЫЕ СЛОВА: АККУМУЛИРОВАНИЕ, РАДИОНУКЛИДЫ, ФИТОЦЕНОЗЫ, ИЗЛУЧЕНИЕ, РАСТИТЕЛЬНОСТЬ.

    ОБЪЕКТ ИССЛЕДОВАНИЯ: растительные сообщества как аккумуляторы радионуклидов.

    ЦЕЛЬ РАБОТЫ: изучение аккумулирования растительностью радионуклидов в зонах радиоактивного загрязнения.

    МЕТОДЫ ИССЛЕДОВАНИЯ. Исходными данными для выполнения исследований явилась специальная научная литература, всемирная сеть Интернет.

    РЕЗУЛЬТАТЫ: изучены особенности аккумулирования радионуклидов растительными сообществами в зонах радиоактивного загрязнения.

    АКТУАЛЬНОСТЬ выбранной темы курсовой работы обусловлена тем, что в настоящее время важнейшая проблема сельского хозяйства в условиях загрязнения почвы радиоактивными элементами – максимально возможное снижение поступления этих веществ в растениеводческую продукцию и предотвращение накопление их в организмах сельскохозяйственных животных..

    СОДЕРЖАНИЕ

    ВВЕДЕНИЕ. 4

    ГЛАВА 1 НАКОПЛЕНИЕ РАДИОНУКЛИДОВ. 6

    1.1 Источники радиоактивного загрязнения. 6

    1.2 Особенности аккумуляции радионуклидов растительностью.. 8

    1.3 Накопление радионуклидов в почвах и растениях. 11

    1.4 Пути миграции радионуклидов в окружающей среде. 15

    Глава 2 Особенности аккумуляции радионуклидов различными фитоценозами.. 18

    2.1 Аккумуляция радионуклидов растениями лесных фитоценозов. 18

    2.2 Особенности накопления радионуклидов растениями живого. 22

    напочвенного покрова в дубравах. 22

    2.3 Миграция радионуклидов в сеяные луговые травы.. 25

    2.4 Влияние внешнего облучения и поглощенных радионуклидов. 33

    на жизнедеятельность растений. 33

    Заключение. 2

    СПИСОК ИСПОЛЬЗОВАННОЙ ЛитературЫ.. 5


    ВВЕДЕНИЕ


    В настоящее время и в перспективе особо остро встаёт проблема эколо­гической безопасности окружающей среды, экологически безопасного природопользования при возрастающих антропогенных нагрузках.

    Загрязнение системы “почва – растения – вода” различными химическими веществами, а главным образом твердыми, жидкими и газообразными отходами промышленности, продуктами топлива и т.д. приводит к изменению химического состава почв.

    Техногенные выбросы радионуклидов в природную среду в ряде районов земного шара значительно превышают природные нормы.

    До недавнего времени в качестве важнейших загрязняющих веществ рассматривались, главным образом, пыль, угарный и углекислый газы, оксиды серы и азота, углеводороды. Радионуклиды рассматривались в меньшей степени. В настоящее время интерес к загрязнению радиоактивными веществами вырос, в связи с факторами появления острых токсичных эффектов, вызванных загрязнением стронцием и цезием.

    Чернобыльская катастрофа повлияла на экологическую ситуацию во многих агроэкосистемах Беларуси радиоактивное загрязнение охватило значительные площади: 411 тыс. га (плот­ность загрязнения по 137Cs 5—15 К.и/км2). 216 тыс. га (15— 40 Ки/км2)' 28,3 тыс. га (40—80 Ки/км2), 4,4 тыс. га (80 Ки/км2). Долевое участие лугов и пастбищ в этой градации — соответ­ственно 156,2; 87,8; 12,1; 2,0 тыс. га. Радионуклиды по цепочке “почва – растение – животное” попадают в организм человека, накапливаются и оказывают не благоприятное воздействие на здоровье человека.

    Важнейшая проблема сельского хозяйства в условиях загрязнения почвы радиоактивными элементами – максимально возможное снижение поступления этих веществ в растениеводческую продукцию и предотвращение накопление их в организмах сельскохозяйственных животных. Решение этой задачи связано с комплексом мероприятий, которые необходимо проводить в сельском хозяйстве. Основание для проведения данных мероприятий является увеличение заболеваемости и смертности, врожденных уродств и населения, проживающего на загрязнённых территориях.[ 1]

    ГЛАВА 1 НАКОПЛЕНИЕ РАДИОНУКЛИДОВ

     

    1.1 Источники радиоактивного загрязнения


    Развитие жизни на Земле всегда происходило в присутствии радиационного фона окружающей среды. Радиоактивное излучение определяется естественным радиационным фоном и искусственным. Естественный радиационный фон – представляет собой ионизирующее излучение от природных источников космического и земного происхождения, действующих на человека на поверхности земли. Космические лучи представляют собой поток частиц (протонов, альфа-частиц, тяжёлых ядер) и жёсткого гамма-излучения (это так называемое первичное космическое излучение). При взаимодействии его с атомами и молекулами атмосферы возникает вторичное космическое излучение, состоящее из мезонов и электронов.

    Естественные радиоактивные элементы условно можно разделить на три группы:

    1.                 изотопы радиоактивных семейств урана, тория и актиноурана;

    2.                 не связанные с первой группой радиоактивные элементы – калий - 40, кальций – 48, рубидий – 87 и др.;

    3.                 радиоактивные изотопы, возникающие под действием космического излучения – углерод – 14 и тритии.

    Технически изменённый радиационный фон представляет собой ионизирующее излучение от природных источников, претерпевших определённые изменения в результате деятельности человека. Например, поступление радионуклидов в биосферу вместе с извлечёнными на поверхность земли из недр полезными ископаемыми (главным образом минеральными удобрениями), в результате сгорания органического топлива, излучения в помещениях, построенных из материалов, содержащих естественные радионуклиды, а также облучения за счёт полётов на современных самолётах.

    Излучение, обусловленное рассеянными в биосфере искусственными радионуклидами, представляет собой искусственный радиационный фон (аварии на АЭС, отходы предприятий ядерной энергетики, использование искусственных ионизирующих излучений в медицине, народном хозяйстве).

    Радиоактивное загрязнение природных средств в настоящее время обусловлено следующими источниками:

    -                     глобально распределёнными долгоживущими радиоактивными изотопами – продуктами испытаний ядерного оружия, проводивших в атмосфере и под землёй;

    -                     выбросом радиоактивных веществ из 4-го блока Чернобыльской АЭС в апреле – мае 1986 года;

    -                     плановыми и аварийными выбросами радиоактивных веществ в окружающую среду от предприятий атомной промышленности;

    -                     выбросами в атмосферу и сбросами в водные системы радиоактивных веществ с действующих АЭС в процессе их нормальной эксплуатации;

    -                     привнесенной радиоактивностью (твёрдые радиоактивные отходы и радиоактивные источники).

    Атомная энергетика вносит весьма незначительный вклад в изменение радиационного фона окружающей среды при нормальной работе ядерных установок. АЭС является лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Отработанное в АЭС ядерное топливо иногда подвергается вторичной обработке. Заканчивается процесс, как правило, захоронением радиоактивных отходов. [2]

    Но в результате аварий на АЭС в окружающую среду могут попасть большое количество радионуклидов. Возможны аварии с локальными загрязнения только технологических помещений. Также случаются аварии, которые сопровождаются выбросом в окружающие среду радиоактивных веществ в количествах, превышающие установленные пределы. Большую опасность при этом имеют выбросы в атмосферу. Аварийный выброс в водную среду, по мнению специалистов, менее вероятное событие и будет характеризоваться более низкими уровнями воздействия.

    Также большое значение как источника радиации имеют ядерные взрывы. При испытаниях ядерного оружия в атмосфере часть радиоактивного материала выпадает неподалеку от места испытания, какая-то часть задерживается в нижнем слое атмосферы, подхватывается ветром и переносится на большие расстояния. Находясь в воздухе около месяца, радиоактивные вещества во время этих перемещений постепенно выпадают на землю. Однако, большая часть радиоактивного материала выбрасывается в атмосферу (на высоту 10-15 км), где он остаётся многие месяцы, медленно опускаясь и рассеиваясь по всей поверхности земного шара.

    В настоящее время большой вклад в дозу получаемую человеком вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Также проблемы могут возникать при не правильной транспортировке радиоактивных отходов на комбинат по переработке этих отходов, хранении жидких и твёрдых радиоактивных отходов.

    Таким образом, из всего выше сказанного можно сделать вывод, что в изменении радиационного фона окружающей среды большой вклад вносят АЭС, ядерные взрывы и радиоактивные отходы.


    1.2 Особенности аккумуляции радионуклидов растительностью


    Между плотностью загрязнения почв радионуклидами природно-растительных комплексов и удельной радиоактивностью растений существует прямая зависимость. Например, растения в 1990 г. имели следующую удель­ную радиоактивность: хвоя сосны—1,8-10-7 Ки/кг, черника — 1,2- К)-7, мох Шребера— 1,1-КН Ки/кг, ХЮ 6 и 2,9-10-6 Ки/кг соответственно. Плотность загрязнения почвы радионуклидами гамма-спектра на этих пробах была равна 7,0 и 19,9 Ки/км2.

    На луговых пробных площадях, как и в лесных фитоценозах, аналогичная закономерность соблюдалась только в идентичных типах луга, характеризующихся сходными свойствами почв. Так, пойма р. Сож щучка дер­нистая имела удельную радиоактивность 4,3-10-8 Ки/кг, осока пузырчатая—1,4-10-7, клевер луговой — 5,5-Ю-8 Ки/кг. Пока­затели удельной радиоактивности аналогичных растений на ПП 20 (Ветковский район, пойма р. Беседь) были значительно. Плотность загрязне­ния почв радионуклидами на этих пробных площадях была равна соответственно 4,2 и 17,1 Ки/км2.

    Растения живого напочвенного покрова аккумулировали эти радионуклиды по-разному: по аккумуляции стронция-90 выде­ляется овсяница овечья (в 10 раз интенсивнее цезия-137), а так­же лишайник олений мох (в 6 раз). В растениях в больших количествах обнаружены изотопы церия, празеодима и рутения, хотя они и не относятся к биогенным элементам. Их накопление соизмеримо с аккумуляцией стронция-90 и цезия-137. По акку­муляции изотопов плутония в растениях лесных фитоценозов, особенно сосняков, выделяется живой напочвенный покров, ко­торый концентрирует эти радионуклиды на 1—2 порядка боль­ше, чем сосна. Н^ луговых пробах подавляющее количество видов концентрирует цезий-137, в меньшей степени — изотопы стронция-90.

    По изотопному составу радионуклидов, содержащихся в при­родно-растительных комплексах, можно проследить динамику общего содержания гамма-излучаюших радионуклидов в расте­ниях. С момента аварии удельная радиоактивность раститель­ности непрерывно падала.

    Значительные колебания удельной радиоактивности отмечаются в самой близ­кой к аварийному реактору точке д. Масаны. Это связано с распадом короткоживущих изотопов — церия, празеодима и рутения, а также цезия-134.

    В настоящее время радиоактивность почв и растений опре­деляется в основном радиоизотопами цезия, стронция и плу­тония.

    Следует подчеркнуть, что с течением времени в почвах уменьшается подвижность цезия-137, а стронция-90 возрастает. Это от­ражается на поступлении данных радионуклидов в растения. Очевидно, что поступление цезия-137 в растения за 5 лет сокра­тилось в 5—10 раз, а стронция-90 возросло в такой же степени. Это обстоятельство следует учитывать при использовании рас­тительных ресурсов в зонах радиоактивного загрязнения.

    Для практики лесного хозяйства очень важны сведения о за­кономерностях распределения радионуклидов по органам расте­ний. Установлено, что радионуклиды больше всего скапливаются в хвоё (листьях), затем в коре, ветвях, меньше всего их в Дре­весине.

    Следует задуматься над тем, что при использовании «чи­стой» древесины мы получаем большую массу отходов с высо­кой радиоактивностью, которые неизвестно куда девать — то ли сжигать, то ли подвергать захоронению. Однако отходы — цен­ное сырье, его нельзя терять, это неэкономично. Мы рекомен­дуем воздерживаться от эксплуатации таких насаждений в ближайшие 30—60 лет до понижения радиоактивности органов древесных пород до приемлемого уровня за счет естественного распада радионуклидов. [5]

    В лесных фитоценозах картина несколько иная. Из напочвен­ного покрова в почву возвращается примерно 50% радионук­лидов, а из древесного яруса за счет опада хвои, веток, шишек, коры в почву поступает около 5% радиоизотопов, или 0,1 Ки/км2. Общее поступление (возврат) радионуклидов в почву составляет (с учетом живого напочвенного покрова) 0,46 Ки/км2.

    Таким образом, живой напочвенный покров, особенно травянистые растения, принимает более активное участие в круго­вороте радионуклидов в природно-растительных комплексах. В результате изучения круговорота радионуклидов в природно-растительных комплексах можно составить схему распреде­ления радионуклидов между компонентами биогеоценоза. Наибольшей удельной радиоактивностью обладает нижний ярус фитоценоза (мхи, лишайники, грибы), затем идут травянистые виды, кустарнички, подлесок и подрост. Наименьшая удельная радиоактивность характерна для древесного— верхнего — яру­са фитоценоза. Это связано с особенностями биологии и строе­ния растений. В большем количестве радионуклиды накапли­ваются в тех органах и тканях растений, в которых происходит интенсивный обмен веществ и относительно высокий процент белка. В одревесневевших органах и тканях, играющих проводя­щую роль, радионуклиды накапливаются в меньших количе­ствах. В связи с этим сильнейшими биоконцентратами радио­нуклидов являются шляпочные грибы.


    1.3 Накопление радионуклидов в почвах и растениях


    Значительная часть радионуклидов находится в почве, как на поверхности, так и в нижних слоях, при этом их миграция во многом зависит от типа почвы, её гранулометрического состава, водно-физических и агрохимических свойств.

    Основными радионуклидами, определяющими характер загрязнения, в нашей области является цезий – 137 и стронция – 90, которые по разному сортируются почвой. Основной механизм закрепления стронция в почве – ионный обмен, цезия – 137 обменной формой либо по типу ионообменной сорбции на внутренней поверхности частиц почвы.

    Поглощение почвой стронция – 90 меньше цезия – 137, а следовательно, он является более подвижным радионуклидом.

    В момент выброса цезия – 137 в окружающие среду, радионуклид изначально находится в хорошо растворимом состоянии (парогазовая фаза, мелкодисперсные частицы и т.д.)

    В этих случаях поступления в почву цезий – 137 легко доступен для усвоения растениями. В дальнейшем радионуклид может включаться в различные реакции в почве и подвижность его снижается, увеличивается прочность закрепления, радионуклид “стареет”, а такое “старение” представляет комплекс почвенных кристаллохимических реакций с возможным вхождением радионуклида в кристаллическую структуру вторичных глинистых минералов.

    Механизм закрепления радиоактивных изотопов в почве, их сорбция имеет большое значение, так как сорбция определяет миграционные качества радиоизотопов, интенсивность поглощения их почвами, а, следовательно, и способность проникать их в корни растений. Сорбция радиоизотопов зависит от многих факторов и одним из основных является механический и минералогический состав почвы тяжёлыми по гранулометрическому составу почвами поглощённые радионуклиды, особенно цезий – 137, закрепляются сильнее, чем лёгкими и с уменьшением размера механических фракций почвы прочность закрепления ими стронция – 90 и цезия – 137 повышается. Наиболее прочно закрепляются радионуклиды илистой фракцией почвы.

    Большему удержанию радиоизотопов в почве способствует наличие в ней химических элементов, близких по химическим свойствам к этим изотопам. Так, кальций – химический элемент, близкий по своим свойствам стронцию – 90 и внесение извести, особенно на почвы с высокой кислотностью, ведёт к увеличению поглотительной способности стронция – 90 и к уменьшению его миграции. Калий схож по своим химическим свойствам с цезием – 137. Калий, как неизотопный аналог цезия находится в почве в макроколичествах, в то время как цезий – в ультромикроконцентрациях. Вследствие этого в почвенном растворе происходит сильное разбавление микроколичеств цезия – 137 ионами калия, и при поглощении их корневыми системами растений отмечается конкуренция за место сорбции на поверхности корней. Поэтому при поступлении этих элементов из почвы в растениях наблюдается антагонизм ионов цезия и калия.

    Кроме того эффект миграции радионуклидов зависит от метеорологических условий (количество осадков).

    Установлено, что стронций – 90 попавший на поверхность почвы, вымывается дождём в самые нижние слои. Следует заметить, что миграция радионуклидов в почвах протекает медленно и их основная часть находится в слое 0 – 5 см.

    Накопление (вынос) радионуклидов сельскохозяйственными растениями во многом зависит от свойства почвы и биологической особенности растений. На кислых почвах радионуклиды поступают в растения в значительно больших количествах, чем из почв слабокислых. Снижение кислотности почвы, как правило, способствует уменьшению размеров перехода радионуклидов в растения. Так, в зависимости от свойства почвы содержание стронция – 90 и цезия – 137 в растениях может изменяться в среднем в 10 – 15 раз.

    А межвидовые различия сельскохозяйственных культур в накопление этих радионуклидов наблюдается зернобобовыми культурами. Например, стронций – 90 и цезий – 137, в 2 – 6 раз поглощается интенсивное зернобобовыми культурами, чем злаковыми.

    Поступление стронция – 90 и цезия – 137 в травистой на лугах и пастбищах определяется характером распределения в почвенном профиле.

    На целинных участка, естественных лугах, цезий находится в слое 0-5 см, за прошедшие годы после аварии не отмечена значительная вертикальная миграция его по профилю почвы. На перепаханных землях цезий – 137 находится в пахотном слое.

    Страницы: 1, 2, 3, 4


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.