МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Реферат: Оптоволоконные линии связи

    Интеграция ВСМ и фотоприемников. Четырехканальный демультиплексор с малыми потерями был монолитно интегрирован с фотодетекто­рами. Демультиплексор состоял из диспергирующей волноводной системы, соединенной с планарными фокусирую­щими областями (рис. 2.11).

                      Рис. 2.11

    В устройстве использовались гребневые волноводы с поперечной разностью показателей пре­ломления 0,037 и nэфф=3,29 (для ТЕ-поляризации). Ширина и высота гребня составляли соответственно 2 и 0,35 мкм. Свет из выходных волноводов поступал на фотодетекторы с помощью устрой­ства связи, использующего проникающее поле. Для увеличения поглощения в фотодетекторе слоистая структура была оптимизирована. Эта структура выращивалась на подложке из n+InP методом MOVPE и имела нелегированный буфер­ный слой InP толщиной 1,5 мкм, нелеги­рованный волноводный слой InGaAs (2=1,3 мкм) - толщиной 0,6 мкм, нелегированный верхний обрамляющий слой волновода - 0,3 мкм, поглощающий слой n-InGaAs (1 х 1017 см -3) - 0,27 мкм, слой p-InP (1 х 1018 см-3) - 0.5 мкм и неволноводный контактный слой р-InGaAs (2x 1018 см -3) – 0,1 мкм. Размеры фотодетектора - 150 х 80 мкм2. Внутрен­ний квантовый выход был лучше 90 %. Вне фотодетектора выращивалась слоистая структура, содержащая тонкие волноводные слои.

    Измерение характеристик демультиплексора проводилось с помощью пере­страиваемого лазерного источника. Из­меренный интервал между каналами составил 1,8 нм. Полная ширина полосы канала по уровню 0.5 была равна 0,7 нм. Демультиплексор, монолитно интегрированный с фотодетекторами имел по­тери для ТЕ-поляризации 3-4 дБ, для ТМ-поляризации на 0,5 дБ больше. Внешняя чувствительность фотодетектора составляла 0,12 А/Вт. Полные внеш­ние потери, включая потери на связь фотодетектора с волноводом, составляли 10 дБ, перекрестные помехи – 12 ... 21 дБ. Устройство, включая фотодетекторы и входные полосковые волноводы, имело размеры 3,0 х 2,3 мм2.

    2.1.4.    Оптические мультиплексоры с добавлением и отводом каналов.

     Оптический мультиплексор с добавлением и отводом каналов (МД/О) является устройством, предоставляющим одновременный дос­туп ко всем каналам на соответствую­щих длинах волн в системах связи с ВСМ/Д. В англоязычной литера­туре используется терминология Add/ Drop Multiplexer (A/DM). На рис. 2.12 приведена конфигурация такого волноводного 16-ти канального оптического мультиплексора. Его устройство состоит из четырех ВСМ/Д и 16-ти двухпозиционных термооптических (ТО) переключателей.

    Рис. 2.12

    Четыре ВСМ/Д с оди­наковыми параметрами расположены в месте пересечения их планарных фокаль­ных областей. В диапазоне 1.55 мкм спектральные интервалы между канала­ми и область дисперсии составляли 100 и 3300 ГГц (26,4 нм) соответственно. Сиг­налы, поступающие с мультиплексора (l1, l2, ... l16) с равными спектральными интервалами между ними, поступают на главные входные порты (добавленные порты). Разделившиеся с помощью ВСМ/Д1 (ВСМ/Д2) 16 сигналов вводятся в левые плечи (правые плечи) ТО пере­ключателей. Любой оптический сигнал, введенный в двухпозиционный ТО пере­ключатель, проходит через кросс-порт одного из четырех итерферометров Ма­ха-Цендера, прежде чем достичь выход­ного порта. С другой стороны, любой сигнал с определенной длиной волны может быть удален из главного выход­ного порта и приведен к отводящему порту после изменения соответствующе­го условия в переключателе. Сигнал с той же самой длиной волны, что и отведенный, может быть добавлен в главный выходной порт, если будет по­ступать на добавленный порт (рис. 12). Например, если ТО переключатели SW2, SW4, SW6, SW7, SW9,SW12, SW13 и SW15 находятся в положении "Вкл.", выделен­ные сигналы l2, l4, l6, l7, l9, l12, l13 и l15 выводятся из главного выходного порта (сплошная линия) и присоединяются к отводящему порту (пунктирная линия), как показано на рис. 2.13.

    Рис. 2.13

    Перекрестные помехи для положений "Вкл. - Выкл." оказались меньше 28,4 дБ при потерях на кристалл 8...10 дБ. Как видим, МД/О весьма привлекательны для всех систем связи с ВСМ/Д и позволяют оптической сети быть прозрачной для сигналов с большими битовыми скоростями и фор­матами.

    Перспективы широкого практическо­го применения МД/О привлекли иссле­дователей к разработке средств проекти­рования сложных фотонных интеграль­ных цепей. Для четырехканального МД/О был предложен метод иницииро­вания проекта на символическом уровне, а также моделирование (начиная с этого уровня) и создание маски макета. Использованная система автоматическо­го проектирования базировалась на известной специализированной системе проектирования для СВЧ-диапазона.

    Моделирование фазара выполнялось в два этапа: сначала создавалась геомет­рия фазара с желаемой спецификацией, в которую включалось определенное чис­ло входных и выходных портов, цент­ральная длина волны и спектральный интервал между каналами, затем моде­лировалось распространение волн через фазар.

    Проект геометрии фазара имел два звездных соединителя, связанных матрицей пря­молинейных и изогнутых волноводов. Фазар с N входными и М выходными волноводами описан с помощью (N +M) х (N + M) S-матрицы. Элемен­ты матрицы SiJ вычислялись следующим образом. Сначала определялось поле, излучаемое из порта i, и коэффициенты связи с каждым волноводом матрицы. Затем вычислялось распростране­ние волн в каждом волноводе с учетом потерь на переходах и излучение в изогнутых волноводах. Наконец, с по­мощью того же метода, что и для входных портов, определялись коэффи­циенты связи между каждым волново­дом матрицы и выходным волноводом  j.

    Пример символического представле­ния матрицы фазара 6 х 6 вместе с маской схемы показан на рис. 2.14.

    Рис. 2.14

    На следующей стадии проектировалась мо­дель МД/О, состоящего из фазара 6 х 6 и обратных волноводных петель. В траек­тории петель включены переключатели типа интерферометров Маха-Цандера, которые открывают и закрывают петли. Символическое представление МД/О приведено на рис 2.15.

    Четырехканальный МД/О с кон­струкцией, идентичной рассчитанному проекту, был реализован на основе InP. Сравнение результатов моделирования и измерений показало сдвиг макси­мума полосы пропускания отдельного

    Рис. 2.15

    канала на 9 нм. Главным образом это было следствием различия между спроектированной и изготовленной волноводными структурами. Потери составили 7 … 9 дБ, остаточный сигнал в полосе соседнего сигнала оказался примерно па 30 дБ ниже исходного сигнала. Эти значения находятся в хорошем согласии с рассчитанными.

    2.2.    Выводы.

    Волноводные спектральные мультиплексоры/демультиплексоры являются ключом к решению проблемы использова­ния всей чрезвычайно широкой полосы пропускания волоконных световодов. Наибольшее развитие получили ВСМ/Д, выполненные на основе SiО2/Si и на InP. Первые обладают меньшими потерями на кристалл, в то время как полупроводни­ковые пассивные оптические интеграль­ные схемы могут быть непосредственно интегрированы с источниками излучения, усилителями, фотодетекторами и др. При этом на одной подложке могут быть объединены оптические и электронные компоненты. Изготовление оптических волноводных спектральных мультиплек­соров выполняется методами стандартной (вы­сококачественной) литографии. Соедине­ние оптических планарных интегральных цепей с волоконными световодами доста­точно разработаны и не вносят существен­ных потерь. Размеры приборов (без кор­пусов) не превышают 1 - 2 см. Такие характеристики предвещают быстрое раз­витие производства дешевых, коммерче­ски приемлемых приборов нового поколе­ния не только для дальней связи, но и для местной широкополосной связи типа дом - дом.

    3.    Применение оптических циркуляторов в волоконно-оптических системах передачи

    Эволюция развития волоконно-оптических сис­тем передачи (ВОСП) от простых линий передачи к более совершенным системам с оптической обработкой сигнала стимулирует создание новых оптических устройств, обладаю­щих невзаимными свойствами, - оптических изоляторов (ОИ) и

    оптических циркуляторов (ОЦ). В свою очередь применение таких устройств в аппаратуре ВОСП позволяет расширить функциональные возможности и улучшить характеристики ВОСП.

    Оптический циркулятор представляет собой  пассивное трех- или четырехпортовое оптическое устройство, которое благодаря своим невзаимным свойствам может распределять поступающее оптическое излучение в различные порты в зависимости от направления распространения излучения. Невзаимность свойств ОЦ (так же, как и ОИ) обусловлена эффектом невзаимного поворота плоскости поляризации (Эф­фект Фарадея) в магнитоупорядоченных кристаллах, в частно­сти, в кристаллах ферритов-гранатов.

    Рис.3.1

    Схема работы простого трехпортового ОЦ (Y-типа) по­казана на рис.3.1.а. Оптическое излучение, которое поступает через порт 1, выходит через порт 2. Однако излучение, поступающее в обратном направлении через порт 2, направ­ляется в порт 3, а не в порт 1. Поэтому при использовании двух соседних портов ОЦ функционирует как обычный ОИ, а при использовании всех трех портов может осуществляться двуна­правленная передача по одному волокну.

    В общем случае ОЦ (Х-типа) имеет четыре порта (рис.3.1.б). Аналогично предыдущему оптический пучок, входящий через порт 3, выходит через порт 4, а входящий через порт 4, выходит через порт 1. Для большинства применений ОЦ достаточно использование первых трех портов.

    3.1.    Структура и принцип работы оптического циркулятора.

    В настоящее время известно несколько схем построения ОЦ. ГП "Дальняя связь" разработана и выпускается модифи­цированная схема ОЦ со специальной призмой, имеющей щель.

    Рис.3.2

    Структура устройства и положение поляризационных компонентов показаны на рис. 3.2, где 1, 2, 3 - волоконные коллиматоры; 4 - специальная поворотная призма со щелью; 5, 7, 8, 9 - двулучепреломляющие элементы из кристалла рутила; 6 - 45-градусный фарадеевский вращатель из кристалла иттрий-железного граната. Принцип работы ОЦ заключается в следующем.

    Прямой канал 1-2 фактически является одноступенчатым изолятором, работающим в прямом направлении. Поступаю­щее в ОЦ через порт 1 оптическое излучение с произвольной поляризацией коллимируется линзой 1 и попадает на первый двулучепреломляющий элемент 5 из кристалла рутила. При прохождении через этот элемент входной пучок разделяется на два луча с ортогональной поляризацией - обыкновенный (о-луч) и необыкновенный (е-луч), при этом е-луч отклонятся от первоначального направления и на выходе элемента оказывается смещенным относительно о-луча (позиция "С" на рис. 3.2.б). Далее эти лучи проходят через фарадеевский вращатель поляризации 6, выполненный на основе кристалла иттрий-железного граната. Здесь плоскости поляризации обо­их лучей поворачиваются на 45° (позиция "В" на рис.3.2). Затем лучи проходят через второй 7 и третий 8 двулучепрело­мляющие элементы, где также происходит отклонение лучей.

    Поскольку длина и ориентация второго и третьего рутиловых элементов относительно первого выбраны соответствую­щим образом, два ортогональных поляризованных луча объединяются в один луч (позиция "А" рис.3.2.б), который выходит из ОЦ через порт 2. Таким образом, оптический сигнал с произвольной поляризацией передается из порта 1 в порт 2 с малыми потерями. И поскольку входной сигнал поступает из порта 1 через щель в призме, то порт 3 оказывается полностью "развязанным" от порта 1.

    При работе в обратном направлении, когда входной сигнал поступает в порт 2, он проходит те же функциональные элементы, но в обратном направлении. Однако в результате невзаимного поворота плоскости поляризации в фарадеевском вращателе 6 два луча, распространяющиеся в обратном направлении, будут поляризованы ортогонально по сравнению с прямым направлением (позиция "С" рис.3.2.б). Поэтому после прохождения через первый рутиловый элемент 5 эти лучи не сходятся в один, а расходятся на удвоенное расстояние (позиция "D" рис.3.2.б) и не попадают в порт 1 через щель в призме. Следовательно, в этом случае имеет место изоляция порта 1 от порта 2, как в обычном оптическом изоляторе. Пучки, симметрично смещенные относительно щели, откло­няются призмой под углом 90° и направляются в отраженный канал (порт 3), где установлен двулучепреломляющий рутило­вый элемент 9. Длина и ориентация этого элемента выбраны таким образом, чтобы поступающие лучи объединились в один луч, выходящий через порт 3. Таким образом, оптический сигнал передается из порта 2 в порт 3 при изоляции порта 1.

    3.1.1.    Характеристики оптических циркуляторов.

    Из принципа работы ОЦ следует, что вносимые в прямой канал потери, заданные выражением А12 = -10 lg P2/P1 (где P1 - мощность на входе 1, Р2 - мощность на выходе 2), определяются суммарным значением потерь коллимирующей системы (включая аберрационные потери линз), потерь в оптических элементах (поглощение, рассеяние и френелевское отражение), отклонением угла фарадеевского вращения от 45° и потерь, связанных с неточностью установки элементов. В зависимости от качества элементов и точности юстировки величина вноси­мых потерь в прямом канале может составлять А12 ~ 0,8...1,6 дБ. Потери в отраженном канале А23 = -10 lg P3/P2 прак­тически лежат в том же интервале, поскольку поворотная призма 4 и дополнительный рутиловый элемент 9 обладают малыми потерями.

    Величина изоляции порта 1 от порта 2, т. е. потери А21 = -10 lg P1/P2 так же как и в случае оптического изоля­тора, определяются степенью разведения поляризованных лучей в двулучепреломляющих элементах, угловой ошибкой при взаимной ориентации этих элементов, отражением и рассеянием излучения в фарадеевском вращателе, а также ошибками при юстировке элементов. Экспериментально уста­новлено, что рассеяние на различных дефектах в кристаллах рутила и граната ограничивает максимальную величину изоляции на уровне 40...45 дБ.

    Как уже отмечалось, в рассматриваемой структуре отсут­ствует непосредственная связь между портами 1 и 3. Поэтому величина перекрестной помехи на ближнем конце А13 = -10 lg P3/P1 определяется только френелевскими отраже­ниями от торцов первого рутилового элемента и фарадеевского вращателя и может быть снижена до уровня менее - 50 дБ.

    Обратные отражения А11, А22, А33 также определяются величиной коэффициента отражения от горцев волокон и от граней элементов. Наклон торцов волокон примерно на 70 и граней элементов примерно на 1 приводит к снижению обратных отражений до уровня 55...-60 дБ.

    На основе предложенной структуры (см. рис. 3.2) изготавливаются и предлагаются потребителям одномодовые поляризационно-независимые ОЦ для диапазонов длин волн 1,3 и 1,55 мкм.

    3.1.2.    Возможные варианты применения оптических циркуляторов в оборудовании волоконно-оптических линий связи.

    Первоначаль­но ОЦ разрабатывался для применения в качестве одного из элементов оптического усилителя, позволяющего улучши­ть характеристики усилителя путем замены простых оптиче­ских ответвителей на ОЦ. Кроме того, использование ОЦ позволяет реализовать схему оптического усилителя, работаю­щую в режиме "на отражение".

    Рис.3.3

    Схема волоконно-оптического усилителя отражательного типа, в котором используется оптический циркулятор, показана на рис.3.3. При такой схеме эффективность действия накачки в активном эрбиевом волокне увеличивается в два раза.

    Применение ОЦ перспективно в измерительных системах, в частности, в рефлектометрах. Так, замена традиционного трехдецибельного направленного ответвителя на ОЦ в выпу­скаемых ГП "Дальняя связь" оптических рефлектометрах ОР-2-1 позволяет увеличить динамический диапазон примерно на 6 дБ, т. е. увеличить дальность действия прибора на 10-15 км в диапазоне 1,55 мкм. Однако более широкое применение ОЦ найдут в качестве элементов волоконно-оптического тракта. В частности, будучи включенными в волоконно-оптический тракт, они обеспечивают одновременную двуна­правленную передачу по одному оптическому волокну.

    Рис.3.4

    Схема испытаний двух образцов ОЦ в составе комплектов аппаратуры ОТГ-32Е при двунаправленной передаче по одно­му оптическому волокну показана на рис.3.4 (длина волны А =1,55 мкм, скорость передачи В = 34 Мбит/с, ПОМ - передающий оптический модуль, ПРОМ - приемный оптиче­ский модуль, ОС - одномодовый оптический соединитель, Атт. - регулируемый одномодовый оптический аттенюатор, ОЦ - оптический циркулятор). Испытания, проведенные при одно­временной встречной работе двух комплектов аппаратуры ОТГ-32Е, работающей со скоростью 34 Мбит/с, по одному волокну с включенными двумя ОЦ, показали, что при исходном энергетическом потенциале 32 дБ снижение послед­него благодаря использованию ОЦ не превышает 4 дБ. Величина остающегося потенциала достаточна для обеспече­ния значительной дальности связи при двунаправленной пере­даче по одному волокну.

    Необходимо отметить, что физические принципы работы ОЦ никак не ограничивают скорость передачи информации в создаваемом одноволоконном тракте. Такое техническое ре­шение дает возможность отказаться в обоснованных случаях от прокладки дополнительных оптических кабелей при расши­рении сети или сохранить работоспособную сеть в условиях выхода из строя нескольких оптических волокон.

    3.2.    Выводы

    Этот же принцип использования ОЦ позволяет достаточно просто решить ряд возникающих у операторов связи задач и дает возможность:

    - организовать эффективное уплотнение волоконно-оптического кабеля при ограниченном числе свободных волокон;

    - осуществлять контроль целостности волоконно-оптического тракта без перерыва связи с помощью измерения в обратном направлении уровня мощности оптического излуче­ния от какого-либо источника излучения;

    - создавать обратный управляющий канал в интерактивных системах кабельного телевидения в условиях, когда до абонента прокладывается лишь одно волокно;

    Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.