МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Разработка термокаталитического сенсора для определения природного газа и бензина в газовых средах

    Разработка термокаталитического сенсора для определения природного газа и бензина в газовых средах

    Разработка термокаталитического сенсора для определения природного газа и бензина в газовых средах

    Мельник Александр Вадимович

    Автореферат диссертации на соискание ученой степени кандидата химических наук

    Краснодар - 2007

    Работа выполнена в Сочинском научно-исследовательском центре Российской академии наук.

    Общая характеристика работы

    Актуальность работы. Одной из задач в области охраны окружающей среды и борьбы за ее чистоту является систематический контроль за содержанием загрязнителей.

    Природный газ (метан) и углеводороды (например, бензин, керосин) – одни из самых распространенных загрязнителей атмосферного воздуха. Они поступают в атмосферу в результате испарения и вытекания из различных емкостей, трубопроводов, выбросов и сгорания в двигателях внутреннего сгорания. Природный газ и бензин образуют с воздухом взрывоопасные смеси.

    Поэтому задача контроля критических довзрывоопасных концентраций углеводородов в атмосфере представляет одну из важных задач в обеспечении техники безопасности населения, эксплуатации автотранспорта и летательных аппаратов, а также при экономии нефтепродуктов и их пожаро-, взрывобезопасности. Существующие селективные газоанализаторы и сенсоры обеспечивающие измерение нижнего предела пожаро-, взрывобезопасности, а также определения необходимых концентраций метана, других углеводородов имеют высокую стоимость, большие габариты и массу, требуют высокой квалификации оператора. Они позволяют проводить анализ периодически и чаще всего в стационарных условиях, что затрудняет применение существующих методик анализа, газоанализаторов для получения надежной непрерывной аналитической информации о концентрации газообразных веществ в атмосфере. В связи с этим актуальны исследования, направленные на разработку, создание новых высокоэффективных и совершенствование существующих методик анализа, приборов, сенсоров непрерывного автоматического, экспрессного определения углеводородов в газовых и парогазовых средах.

    В анализе горючих компонентов воздуха широкое распространение, в настоящее время получили термокаталитические методы. Основным преимуществом подобного метода и созданных на их основе приборов является простота эксплуатации, портативность, повышенный ресурс работы, высокая точность и быстродействие. Данное преимущество позволяет легко автоматизировать технологический процесс и позволяет осуществлять сбор, накопление необходимой аналитической информации.

    Данная работа является частью исследований, выполненных по плану научно-исследовательских работ: «Исследование природной среды, геофизических процессов, интегрированных систем «Человек – машина – среда», их влияния на свойства сложных технических задач, для решения проблем обороноспособности, информационной, сейсмической, экологической и экономической безопасности», согласно Постановлению Президента Российской академии наук и Федерального агентства Правительственной связи и информации при президенте Российской Федерации №25/21 от 27 июня 2000 г., номер государственной регистрации 01.200.202.360.

    Цель работы. Оптимизация условий, разработка, создание, испытание, внедрение термокаталитических сенсоров и на их основе газоанализаторов для автоматического определения углеводородов метана и бензина, а также их смесей в газовых средах.

    В соответствии с поставленной целью были решены следующие задачи:

    исследованы каталитические свойства оксидов металлов кобальта, марганца, никеля, цинка, хрома, меди, ванадия и разработаны селективные каталитические системы для термокаталитического сенсора метана и бензина, а также их смесей, в присутствии других газообразных соединений;

    разработаны автоматические методики, созданы сенсоры и газоанализаторы с улучшенными метрологическими характеристиками (селективность, воспроизводимость и др.) для непрерывного автоматического определения метана и паров бензина;

    разработаны методики приготовления поверочных газовых и парогазовых смесей метана и бензина в воздухе;

    изучена кинетика и механизм окисления углеводородов на поверхности катализатора термокаталитического сенсора;

    изготовлены и испытаны термокаталитические сенсоры паров бензина и природного метанового газа;

    повышена чувствительность, селективность, стабильность работы, установлены время готовности и другие метрологические характеристики термокаталитических сенсоров;

    изучено влияние различных факторов (температуры, давления, влажности и др.) на основные метрологические характеристики автоматического газоанализатора метана и бензина.

    Научная новизна. Разработан способ изготовления селективных термокаталитических сенсоров определения метана и паров бензина, основанный на использовании термочувствительных элементов (измерительного и компенсационного), содержащих катализаторы, обладающие переменной активностью к различным компонентам газовой смеси.

    Установлены активность и селективность катализаторов при окислении на поверхности горючих веществ.

    Оптимизированы условия окисления индивидуальных углеводородов и их смесей на поверхности катализатора термокаталитического сенсора. С использованием подобранных катализаторов разработаны селективные термокаталитические сенсоры и автоматические газоанализаторы для определения метана и паров бензина.

    Установлено влияние различных факторов (температуры, давления, содержания мешающих компонентов, влажности, и др.) на метрологические, эксплуатационные и другие характеристики термокаталитического сенсора.

    Практическая значимость работы. Разработанные селективные сенсоры метана и бензина нашли применение при создании газоаналитических приборов. Селективные термокаталитические сенсоры и автоматические газоанализаторы метана и бензина успешно прошли лабораторные ведомственно-приемочные испытания, рассмотрена возможность их применения в качестве контрольно-измерительных приборов метана и бензина в выхлопных газах транспортных средств, хранилищах топлива и других газовых средах.

    Основные положения выносимые на защиту.

    Количественные данные по изучению активности, стабильности и селективности каталитических смесей при окислении углеводородов в присутствии других горючих веществ.

    Данные по выявлению закономерностей окисления углеводородов на поверхности катализатора термокаталитического сенсора, а также результаты автоматического контроля содержания метана и бензина в воздухе, технологических и выхлопных газах.

    Способ приготовления и аттестации поверочных стандартных газовых и парогазовых смесей в широком диапазоне их концентраций с целью оценки: метрологических характеристик разработанных сенсоров; работоспособности малогабаритных автоматических газоанализаторов метана и паров бензина, а также определения результатов их метрологической оценки.

    Данные автоматического количественного определения содержания углеводородов в выхлопных и технологических газовых средах.

    Апробация работы. Материалы диссертации изложены на Международном конгрессе по аналитической химии «ICAS-2006», VI Всероссийской конференции по анализу объектов окружающей среды «Экоаналитика-2006», конференции молодых ученых Сочинского научно-исследовательского центра РАН (г. Сочи).

    Публикации. По материалам диссертации опубликовано 7 работ, в том числе 4 статьи.

    Объём и структура работы. Диссертационная работа состоит из введения, шести глав, выводов и библиографического списка литературы. Работа изложена на 117 страницах машинописного текста, содержит 6 рисунков и 22 таблицы.

    Диссертация выполнена в Сочинском научно-исследовательском центре Российской академии наук и является частью исследования, выполненной согласно Постановлению Президента Российской академии наук и Федерального агентства Правительственной связи и информации при президенте Российской Федерации.

    ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

    Во введении показана актуальность темы диссертации, дан краткий обзор современного состояния проблемы и определена цель работы.

    В первой главе (литературный обзор) рассмотрены аналитические методы и приборы для определения углеводородов. Указано, что углеводороды (особенно, метан и бензин) являются наиболее распространенными загрязнителями воздушной среды и их количественное экспрессное определение затруднено. Рассмотрены, в основном на примере, хроматографических, оптических, электрохимических и термокондуктометрических методов анализа, газоанализаторы и сенсоры горючих газов, метрологические характеристики различных термокаталитических методик и разработанных на их основе сенсоров. Показано, что большинство существующих методов определения углеводородов требуют использования громоздкой аппаратуры и соответственно имеет стационарный характер применения. Одним из перспективных методов для экспрессного, автоматического определения углеводородов могут оказаться электрохимические и термокаталитические методики. Они обладают широким диапазоном определяемых концентраций и имеют высокую степень автоматизации. Это позволяет в свою очередь получать оперативно более точную и надежную информацию в необходимый период времени. Показано, что указанные преимущества диктуют необходимость разработки методики экспрессного автоматического непрерывного определения углеводородов (метана и паров бензина) и создания на ее основе селективных сенсоров и автоматических газоанализаторов.

    Во второй главе (экспериментальная часть, состоящая из шести глав) описаны устройство и принцип работы термокаталитического сенсора и углеводородов. Принцип действия сенсора основан на измерении концентрации определяемого компонента газовой смеси по количеству тепла, выделяющегося при химической реакции каталитического окисления. Сенсор представляет собой пару чувствительных элементов находящихся в реакционной камере и пару резисторов. При попадании паров бензина или метана в реакционную камеру происходит их сгорание на обоих чувствительных элементах. На чувствительном элементе, покрытом слоем катализатора, сгорание горючего компонента происходит с большей скоростью. Это приводит к более сильному разогреванию данного элемента, и соответственно, к большему изменению его сопротивления. Вследствие этого возникает разность сопротивлений между двумя чувствительными элементами и разбаланс мостовой схемы, который регистрируется. Возникающая разность сопротивлений является сигналом сенсора, регистрируемой в виде напряжения, пропорциональной концентрации углеводорода в анализируемой смеси. Чувствительные элементы в зависимости от назначения подразделяют на измерительный и компенсационный. В рабочем чувствительном элементе изготовленном, как и компенсационный, в виде спирали из литого платинового микропровода в стеклоизоляции, на поверхность наносят в виде шарика оксид алюминия и катализатор. Слой из оксида алюминия выполняет роль пористого носителя для катализатора.

    В третьей главе (первой половине) рассмотрено приготовление газо-воздушных смесей метана (природного метанового газа), а во-второй – парогазовых смесей бензина в воздухе. Стандартные газовые смеси можно приготовить статическим и динамическим способом. Статические основаны на измерении параметров состояния (объемов и давлений). В динамических способах – газовые смеси приготавливают при измерении во времени параметров потоков (расхода смешиваемых компонентов) или параметров газосмесительных устройств (конструктивных режимных факторов). Независимо от способа приготовления газовых смесей требуется, чтобы газ, используемый в качестве исходного, имел чистоту не менее 99,5%. Для приготовления газовых смесей метана в воздухе, использовали статический метод. Он основан на постепенном дозировании в стальной баллон метана, содержание которого в газовой смеси прямо пропорционально отношению изменения давления после ввода соответствующего компонента.

    Отечественная промышленность не выпускает газовые смеси метана в воздухе в виду пожаро,- взрывоопасности и ограничений по технике безопасности возникающих при их транспортировке до потребителя. Для приготовления градуировочных смесей использовали смесительную установку повышенного давления состоящую из баллона с воздухом, манометров, вентилей, баллона для приема приготовленной смеси и исходным чистым газом, вакуумного насоса, вакуумметра и соединительных медных трубок. Содержание метана в газовой смеси (Хi) рассчитывали по уравнению:

    Хi = Рi / P · 100 %, (1)

    где Рi- парциальное давление метана в газовой смеси; Р - общее давление смеси, кПа.

    Дополнительное содержания метана в газовой смеси, полученное статическим методом, контролировали методом газовой хроматографии. Микроконцентрации метана получали разбавлением исходных газо-воздушных смесей, которое осуществляли с помощью генератора типа 623 ГР-03, и генератора чистого воздуха 925 ГЧ-02 производства КНПО «Аналитприбор».

    В качестве наиболее надежной и правильной методики приготовления парогазовых смесей бензина, выбрали динамический метод. Он был основан на установлении динамического равновесия между сорбирующей поверхностью и дозируемым веществом. Установили, что подобные дозаторы просты, имеют хорошую воспроизводимость результатов и надежны в работе. Мы использовали для приготовления парогазовых смесей бензина диффузионный дозатор с полимерной мембраной. Экспериментальные данные показали, что содержание определяемого компонента в парогазовой смеси при использовании дозатора с полимерной мембраной зависит от состава и размера (толщина и площадь) мембраны, температуры и скорости потока газа-разбавителя.

    Дозатор для получения парогазовых смесей бензина состоял из баллона с воздухом, редукторов грубой и тонкой регулировки расхода газа, ротаметров, змеевика для подогрева воздуха пропускаемого через дозатор, дозатора с жидким бензином, термостата, трехходового крана. В качестве дозируемой жидкости использовали бензин, обезвоженный с помощью свежеприготовленного хлорида кальция и очищенный от механических примесей. Температуру термостата-дозатора, варьировали в пределах от 30 до 70 °С, скорость потока воздуха составляла от 13,8 до 40,0 л/ч. Массу испарившейся дозируемой жидкости определяли гравиметрическим методом, путем взвешивания емкости с бензином через каждые 8 часов опыта. Среднюю концентрацию паров бензина (С) на выходе из дозатора рассчитывали по результатам гравиметрических измерений по уравнению:

    С = m / Q, (2)

    где m-массовая скорость испарения, установленная гравиметрически, г/ч; Q - объем воздуха (л/ч) прошедший через испарительную камеру.

    Из данных представленных в качестве примера в табл. 1 видно, что концентрация паров дозируемого бензина зависит от расхода газа-носителя и температуры дозатора. В разработанном дозаторе при варьировании расхода воздуха от 13,8 до 40 л/ч и температуры от 30 до 70 °С, можно получить концентрации паров бензина от 55 - 1410 мг/м3.

    Предложенные нами статический и динамический методики приготовления градуировочных газовых смесей метана и паров бензина полностью удовлетворяли требования, предъявляемым к газоанализаторам по определяемым концентрациям, согласно условиям техники безопасности. Разработанный дозатор паров бензина отличался от существующих простотой эксплуатации и метрологическими характеристиками.

    Таблица 1.

    Зависимость концентрации паров бензина в газовой смеси от температуры и расхода газоносителя (n = 5, Р = 0,95)

    Температура дозатора, °С



    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.