МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Пентозный цикл и взаимопревращения фосфосахаров

    Пентозный цикл и взаимопревращения фосфосахаров

    Министерство образования республики Беларусь

    Мозырский государственный педагогический

    университет им.И.П.Шамякина

    Контрольная работа по предмету: Биохимия

    Подготовила:

    cтудентка IIIкурса

    I группы заочного отделения

    биологического факультета

    Лысенкова Лилия Григорьевна







    Мозырь 2009

    План

    1.Пентозный цикл

    1.1 Взаимные превращения фосфосахаров

    Список литературы


    1.Пентозный цикл и взаимные превращения фосфосахаров

    Термин пентозный цикл (гексозомонофосфатный шунт) означает набор реакций, происходящих в цитоплазме, в результате которых клетки животных получают NADPH, необходимый для реакций восстановления, и рибозо-5-фосфат-основное промежуточное вещество в синтезе нуклеотидов и нуклеиновых кислот. Если таких превращений не происходит, промежуточные вещества пентозного цикла трансформируются в глицеральдегид-3-фосфат и фруктозо-6-фосфат и включаются таким образом в гликолиз.

    Открытие пути прямого окисления углеводов, или, как его называют, пентозофосфатного цикла, принадлежит О.Варбургу, Ф.Липману, Ф.Диккенсу (1935) и В.А. Энгельгарду (1938). Расхождение путей окисления углеводов –классического (цикл тикарбоновых кислот, или цикл Кребса) и пентозофосфатного – начинается со стадии образования гексозамонофосфата. Если глюкозо-6-фосфат изомеризуется во фруктозщ-6-фосфат, который фосфорилируется второй раз и превращается в фруктозо-1,6-бисфосфат, то в этом случае дальнейший распад углеводов происходит по обычному гликолитическому пути с образованием пировиноградной кислоты, которая, окисляясь до ацетил-КоА, затем «сгорает» в цикле Кребса.

    Если второго фосфорилирования гексозо-6-монофосфата не происходит, то фосфорилированная глюкоза может подвергаться прямому окислению до фосфопентоз. В норме доля пентозофосфатного пути в количественном превращении глюкозы обычно невелика, варьирует у разных организмов и зависит от типа ткани и её функционального состояния.

    У млекопитающих активность пентозофосфатного цикла относительно высока в печени, надпочечниках, эмбриональной ткани и молочной железе в период лактации. Значение этого пути в обмене веществ велико. Он поставляет восстановленный НАДФН, необходимый для биосинтеза жирных кислот, холестерина и т.д. За счёт пентозофосфатного цикла примерно на 50% покрывается потребность организма в НАДФН.

    Другая функция пентозофосфатного цикла заключается в том, что он поставляет пентозофосфаты для синтеза нуклеиновых кислот и многих коферментов. При ряде патологических состояний удельный вес пентозофосфатного пути окисления глюкозы возрастает. Механизм реакций пентозофосфатного цикла достаточно расшифрован. [4]


    1.1 Взаимные превращения фосфосахаров


    В отличие от классического пути гликолиза в пентозофосфатном цикле не происходит разрыва молекул сахара на триазы, а окисление осуществляется ступенчато, путём отщепления карбоксильной группы от фосфоглюконовой кислоты, образующейся при окислении глюкозы.

    Согласно исследованиям Рекера и других в 50-х годах процесс начинается с образования глюкозо-6фосфата, который далее окисляется в фосфоглюконовую кислоту (1) при участии фермента дегидрогеназы глюкозо-6 фосфата

     


    CH2O PO3H2

    H O H

    H +HAДФ

    OH H

    OH OH

    H OH


    Глюкозо-6-фосфат Лактон 6-фосфоглюконовой 6-Фосфоглюконовая кислота

    Кислоты


    [2 стр.222]

    Фосфоглюконовая кислота в присутствии кислорода расщепляется с образованием рибулозо-5-фосфата и СО2 при участии дегидрогеназы 6 –фосфоглюконата и НФДФ (2).


    COOH СН2ОН

    HCOH С=О

    HOCH + НАДФ НСОН + НАДФН2 +СО2 (2)

    HCOH НСОН

    HCOH СН2ОРО3Н2

    CH2OPO3H2


    6-Фосфоглюконовая кислота Рибулоза -5-фосфат


    В дальнейшем происходит внутримолекулярная перегруппировка рибулозо-5-фосфата в ксилулозо-5-фосфат при действии фермента фосфопентоэпимеразы. Рибулозо-5-фосфат изомеризуется также в рибозо-5-фосфат.

    3

    СНО СН2ОН СН2ОН

    НСОН С=О С=О

    НСОН НСОН НОСН (3)

    НСОН НСОН НСОН

    CH2OPO3H2 CH2OPO3H2 CH2OPO3H2


    Рибозо-5-фосфат Рибулозо-5-фосфат Ксилулозо-5-фосфат


    В присутствии тиаминпирофосфата (ТПФ) и ионов Мg++ первый и второй атомы углерода ксилулозо-5-фосфата переносятся на молекулу рибозо-5-фосфата. В результате образуется седогептулозо-7фосфат и 3-фосфоглицериновый альдегид:


    Ксилулозо-5-фосфат  Рибозо-5-фосфат

    (донор 2С) (акцептор 2С) (4)

    3-фосфоглицериновый альдегид Седегептулозо-7-фосфат


    Реакция (4) катализируется ферментом транскетолазой.

    Под действием фермента трансальдолазы фрагмент молекулы седогептулозо-7-фосфата, содержащий три атома углерода, переносится на 3-фосфоглицериновый альдегид. При этом 3-фосфоглицериновый альдегид превращается в фруктозо-6-фосфат, а из седогептулозо-7-фосфат образуется эритрозо-4-фосфат:


    Седогептулозо-7-фосфат   3-фосфоглицериновый альдегид

    (донор 3С) (акцептор 3С)

    (5)

    Эритрозо-4-фосфат Фруктозо-6-фосфат [2 стр.223]


    На эритрозо-4-фосфат переносится от ксилулозо-5-фосфата группа из двух атомов углерода. В результате реакции образуется фруктозо-фосфат и 3-фосфоглицериновый альдегид:


    Ксилулозо-5-фосфат   Эритрозо-4-фосфат

    (донор 2С) (акцептор 2С)

    (6)

    3-фосфоглицериновый альдегид Фруктозо-6-фосфат


    В результате 4,5 и 6-й реакции три молекулы пентозофосфата превращаются в две молекулы гексозофосфата и одну молекулу триозофосфата. Гексозофосфат снова подвергаться окислению.

    Расчёты показывают, что если в пентозофосфатный цикл вступили шесть молекул глюкозо-6-фосфата, то из них образуются 6 молекул СО2 (исключительно за счёт окисления первого углеродного атома), 4 молекулы гексозофосфата и 2 молекулы тризофосфата. Последние молут изомеризоваться в гексозофосфат, который, в свою очередь, может подвергаться окислению и т.д.

    Таким образом, в ходе пентозофосфатного цикла происходит не только окисление гексозофосфата с выделением СО2, но и постоянная регенерация гексозофосфата.

    Реакции пентозофосфатного цикла показывают также, как образуются в растении триозы(цепь состоит из трёх атомов углерода), тетрозы (содержащие четыре атома углерода), пентозы (содержащие пять атомов углерода), гексозы (содержащие шесть атомов углерода) и гептозы (содержащие семь атомов углерода).[1 стр.224]

    Пентозы могут образовываться при декарбоксилировании ULР уроновых кислот, чрезвычайно широко распространённых в растительных организмах в виде различного рода полиуронидов. Имеются экспериментальные данные, свидетельствующие о том, что ксилан синтезируется из ксилозы, которая образуется путём окисления глюкозы у шестого углеродного атома и последующего декарбоксилирования возникающей таким образом уроновой кислоты.

    В опытах, проведённых на растениях пшеницы с помощью изотопной методики, было показано, что ксилан особенно легко образуется из глюкуроной кислоты. Результаты этих опытов подтверждают представление о том, что декарбоксилирование галактуроновой и глюкорбоновой кислот (или их полимеров) является важнейшим путём образования арабана и ксилана в растительном организме. Пентозы также могут образовываться путём декарбоксилирования кислот, образующихся при окислении молекул гексозы у первого углеродного атома. Так, при декарбоксилировании фосфоглюконовой кислот ферментными препаратами, выделенными из дрожжей, бактерий и высших растений, образуется фосфорный эфир кетопентозы- рибулозы: образовавшийся таким образом рибулозофосфат под действием рибозофосфат-изомеразы даёт рибозо-фосфат. При этом образуется рибозо-5-фосфат, превращающийся под влиянием фермента фосфорибомутозы в рибозо-1-фосфат. [2 стр.189]

    Образовавшаяся рибулоза под действием особой изомеразы может

    превращаться может превращаться в арабинозу, а специфическая изомераза

    катализирует превращение рибулозо -5-фосфата в ксилулозо-5-фосфат. Таким образом, в результате ферментированных превращений фосфоглюконовой кислоты может образоваться ряд пентозон и их фосфорных эфиров.

    Рассматривая описанный путь образования пентоз из гексоз, нужно отметить, что если уроновые кислоты чрезвычайно широко распространены в растениях, то глюконовая кислота и подобные ей другие кислоты в высших растениях не накапливаются. Они лишь промежуточные продукты пентозофосфатного пути окисления гексозофосфатов.

    Наконец, образование пентоз можно представить как результат синтезирующего действия альдолазы. При взаимодействии фосфодиоксиацетона и фосфоглицеринового альдегида, происходящем под влиянием альдолазы, образуется фруктозодифосфат. Мейергофом показано, что под действием альдолазы фосфодиоксиацетон может обратимо конденсироваться не только с глицериновым альдегидом, но также с целым рядом других альдегидов, найденных в растениях, причём в результате этой реакции образуются пентозы. [ 2 стр 190]

    Пентозофосфатный цикл представляет собой аэробное окисление. Кислород соединяется с водородом, который отщепляется от гликозидного атома углерода глюкозо-6-фосфата при окислении его в 6-фосфоглюконовую кислоту. При этом водород, прежде чем соединиться с кислородом, сначала восстанавливает НАДФ в НАДФН2, который и реагирует в дальнейшем с кислородом воздуха при посредстве цитохромов.

    При окислении двух молекул глюкозо-6-фосфата поглащается две молекулы кислорода и выделяется две молекулы СО2 в процессе фотосинтеза.

    Меченые атомы позволяют отличить, происходят ли начальные этапы окисления глюкозы при дыхании путём гликолиза или же посредством пентозофосфатного цикла. В том случае, когда субстратом дыхания является глюкоза, меченая по первому атому углерода (глюкозо-1-С14), окисление глюкозы по пентозофосфатному циклу будет сопровождаться выделением С14О2. При окислении глюкозы путём гликолиза в составе углекислоты, выделенной при дыхании, будет преобладать немеченая СО2.

    В настоящее время для изучения путей окисления глюкозы попеременно используют глюкозо-1-С14 и глюкозо -6-С14 и определяют в составе выделенной углекислоты отношение С-6:С-1.

    При окислении глюкозы через гликолиз и цикл трикорбоновых кислот отношение С6:С1+1, а при окислении по пентозофосфатному циклу С6:С1<1. При проведении эксперимента необходимо определять это отношение в первых пропорциях выделяющейся углекислоты, так как при полном окислении глюкозы отношение С6/С1 равно 1.

    Опыты с растениями показали, что у старых тканей отношение С6/С1 меньше единицы (около0,5), а у молодых – около единицы. Следовательно, в молодых тканях глюкоза окисляется преимущественно через гликолиз и цикл трикорбоновых кислот, а в старых- через пентозофосфатный цикл. [3 срт129]

    Итак:

    Взаимные превращения фосфосахаров в пентозном цикле.

    Окисление и декарбоксилирование шести молекул глюкозо-6-фосфата даёт 6 молекул пентозофосфата, которые способны к взаимным превращениям под действием трансальдолаз и транскетолаз. В качестве промежуточных соединений образуются фосфорилированные эфиры с 3-7 углеродными атомами. Из этих эфиров получаются четыре молекулы фруктозо-6-фосфата и две молекулы глицеральдегид-3-фосфата. Эти две молекулы конденсируют с образованием фосфорного эфира фруктозы или превращаются далее в геакциях гликолиза. Молекулы фруктозо-6-фосфата изомеризуются в глюкозо-6-фосфат и включаются в общий глюкозо-6-фосфатный путь, который далее испоьзуется в гликолизе или пентозном цикле. В равной мере это справедливо и для других промежуточных соединений. Шесть молекул глюкозо-6-фосфата в результате превращений в пентозном цикле дают 6 молекул СО2 и 6 молекул Н2О и вновь синтезируются пять молекул глюкозо-6-фосфата.



    Список литературы


    1.                 Гребинский С.О. Биохимия растений. под ред. И.Д.Головацкого. Учебное пособие для студентов биологических факультетов университетов. Издательство Львовского университета, 1967.

    2.                 Кретович В.Л. Биохимия растений: Учебник для биол.факультетов ун-тов.-М.: Высш.школа, 1980.

    3.                 Плешков Б.П.Биохимия сельскохозяйственных растений. 2-е доп.изд. Под ред.акад. ВАСХНИЛ В.М.Клечковского. М., «Колос», 1969

    4.                 Материалы с сайта www.xumuk.ru/encyklopedia



    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.