МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Ответы на билеты по биологии 11 класс

    Биологический оптимум. Часто в природе бывает так, что одни экологические факторы находятся в изобилии (например, вода и свет), а другие (например, азот) — в недостаточных количествах. Факторы, снижающие жизнеспособность организ­ма, называют ограничивающими. Например, ручьевая форель живет в воде с содержанием кислорода не менее 2 мг/л. При содержании в воде кислорода менее 1,6 мг/л форель гибнет. Кислород — ограничивающий фактор для форели.

    Ограничивающим фактором может быть не только его недо­статок, но и избыток. Тепло, например, необходимо всем расте­ниям. Однако если продолжительное время летом стоит высо­кая температура, то растения даже при увлажненной почве мо­гут пострадать из-за ожогов листьев.

    Следовательно, для каждого организма существует наиболее подходящее сочетание абиотических и биотических факторов, оптимальное для его роста, развития и размножения. Наилуч­шее сочетание условий называют биологическим оптимумом.

    Выявление биологического оптимума, знание закономернос­тей взаимодействия экологических факторов имеют большое практическое значение. Умело поддерживая оптимальные усло­вия жизнедеятельности сельскохозяйственных растений и жи­вотных, можно повышать их продуктивность.


    3. Приспособление животных к хищничеству.

    Тигр- зубы подразделяются на резцы, клыки и коренные. Резцы мелкие, а клыки крупные. Среди коренных зубов выделяются 4 коренных зуба, кот. в отличие от др. коренных зубов наз. хищными. Клыками хищники убивают добычу, а коренными зубами перегрызают мышцы и сухожилия. Кишечник короткий, что связано с питанием легко перевариваемой высококалорийной животной пищей. Ключицы отсутствуют. Мозг этих животных отличается сильным развитием извилин и борозд. Питается животной пищей. Имеет острые когти. Подушечки на лапах, благодаря которым могут бесшумно подкрадываться.

    Орел- мощный клюв, хорошее зрение, острые и цепкие когти, питается животной пищей.



                                                       























    Билет №14

     1. Хромосомная теория наследственности.

    Мендель проследил наследование только семи пар при­знаков у душистого горошка. В дальнейшем многие исследо­ватели, изучая наследование разных пар признаков у самых разных видов организмов, подтвердили законы Менделя. Было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака — форма пыльцы и окраска цветков не дают неза­висимого распределения в потомстве: потомки остались по­хожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. В самом деле, у любого организма признаков очень много, а число хромосом невелико. Следовательно, в каж­дой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен выдающимся американ­ским генетиком Т. Морганом.

    Предположим, что два гена — А и В находятся в одной хромосоме, и организм, взятый для скрещивания, гетерози­готен по этим генам.

    В анафазе первого мейотического деления гомологичные хромосомы расходятся в разные клетки и образуются два сорта гамет вместо четырех, как должно было бы быть при дигибридном скрещивании в соответствии с третьим зако­ном Менделя. При скрещивании с гомозиготным организ­мом, рецессивным по обоим генам — аа и bb, получается рас­щепление 1:1 вместо ожидаемого при дигибридном анали­зирующем скрещивании 1:1:1:1.

    Такое отклонение от независимого распределения озна­чает, что гены, локализованные в одной хромосоме, наследу­ются совместно.

    Рассмотрим конкретный пример. Если скрестить муш­ку дрозофилу, имеющую серое тело и нормальные крылья, с мушкой, обладающей темной окраской тела и зачаточны­ми крыльями, то в первом поколении гибридов все мухи будут серыми с нормальными крыльями. Это гетерозиготы по двум парам аллельных генов, причем ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых крыльев.

    При анализирующем скрещивании гибрида Ft с гомози­готной рецессивной дрозофилой (темное тело, зачаточные крылья) подавляющее большинство потомков F2 будет сходно с родительскими формами.


    2. Сходство и различие между человеком и другими животными.

    Рвзличия

    а) Обусловленные прямохождением: - S - образный позвоночник; - широкий таз и грудная клетка; - сводчатая стопа; - мощные кости нижних конечностей; б) Обусловленные трудовой деятельностью: - противопоставление большего пальца на руке остальным; в) Обусловленные развитым мышлением: - преобладание мозговой части черепа над лицевой; - развитый головной мозг.

    Сходство прослеживается в строении человека и других позвоночных животных. Человек относится к млекопитающим, так как имеет диафрагму, молочные железы, дифференцированные зубы (резцы, клыки и коренные), ушные раковины, зародыш его развивается внутриутробно. У человека есть такие же органы и системы органов, как и у других млекопитающих: кровеносная, дыхательная, выделительная, пищеварительная и др.

    О родстве человека с животными свидетельствуют также рудименты и атавизмы. У человека свыше 90 рудиментарных органов: копчик, аппендикс, зубы мудрости и др. Среди атавизмов можно назвать сильно развитый волосяной покров на теле, дополнительные соски, хвост. Эти признаки были развиты у предков человека, но изредка встречаются и у современных людей.

    Сходство прослеживается и в развитии зародышей человека и животных. Развитие человека начинается с одной оплодотворенной яйцеклетки. За счет ее деления образуются новые клетки, формируются ткани и органы зародыша. На стадии 1,5-3 месяцев внутриутробного развития у человеческого плода развит хвостовой отдел позвоночника, закладываются жаберные щели. Мозг месячного зародыша напоминает мозг рыбы, а семимесячного - мозг обезьяны. На пятом месяце внутриутробного развития зародыш имеет волосяной покров, который впоследствии исчезает. Таким образом, по многим признакам зародыш человека имеет сходство с зародышами других позвоночных.

    Поведение человека и высших животных очень сходно. Особенно велико сходство человека и человекообразных обезьян. Им свойственны одинаковые условные и безусловные рефлексы. У обезьян, как и у человека, можно наблюдать гнев, радость, развитую мимику, заботу о потомстве. У шимпанзе, например, как и у человека, различают 4 группы крови. Люди и обезьяны болеют болезнями, не поражающими других млекопитающих, например холерой, гриппом, оспой, туберкулезом. Шимпанзе ходят на задних конечностях, у них нет хвоста. Генетический материал человека и шимпанзе идентичен на 99%.

    3. Составить схему пищевой цепи в лесу

    Пищевую цепь, например, составляют растительноядные мышевидные грызуны и зайцы, а также копытные за счет которых существуют хищники: ласка, горностай, куница, волк. Все виды позвоночных служат средой обитания и источником питания для различных наружных паразитов.


     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    Билет №15

     1. Сцепление и кроссинговер. Кроссинговер как источник изменчивости.

    Группы сцепления. Число генов у каждого организма, как мы уже отмечали, гораздо больше числа хромосом. Следователь­но, в одной хромосоме расположено много генов. Как насле­дуются гены, расположенные в одной паре гомологичных хро­мосом?

    Большую работу по изучению наследования неаллельных ге­нов, расположенных в паре гомологичных хромосом, выполни­ли американский ученый Т. Морган и его ученики. Ученые ус­тановили, что гены, расположенные в одной хромосоме, насле­дуются совместно, или сцепленно. Группы генов, расположен­ные в одной хромосоме, называют группами сцепления. Сцеп­ленные гены расположены в хромосоме в линейном порядке. Число групп сцепления у генетически хорошо изученных объ­ектов равно числу пар хромосом, т. е. гаплоидному числу хро­мосом. У человека 23 пары хромосом и 23 группы сцепления, у гороха 7 пар хромосом и 7 групп сцепления и т. д.

    Сцепленное наследование и явление перекреста. Рассмотрим, какие типы гамет будет производить особь, два гена которой находятся в одной хромосоме:------(А)-----(В)------

                        ------(а)------(b)------                                 

    Особь с таким генотипом производит два типа гамет: -----(а)----(b)----- и            -----(А)-----(B)----- в равных количе­ствах, которые повторяют комбинацию генов в хромосоме роди­теля.  Было установлено,  однако,  что,  кроме  таких  обычных гамет, возникают и другие, новые

    -----(А)-----(b)----- и -----(а)----(B)-----, с но­выми комбинациями генов, отличающимися от родительских хромосом. Было доказано, что причина возникновения но­вых гамет заключается в перекресте гомологичных хромосом.

    Гомологичные хромосомы в процессе мейоза перекрещивают­ся и обмениваются участками. В результате этого возникают ка­чественно новые хромосомы. Частота перекреста между двумя сцепленными генами в одних случаях может быть большой, в других — менее значительной. Это зависит от расстояния меж­ду генами в хромосоме. Частота (процент) перекреста между дву­мя неаллельными генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Чем ближе располо­жены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем даль­ше гены отстоят друг от друга, тем слабее сцепление между ни­ми и тем чаще осуществляется перекрест. Следовательно, о рас­стоянии между генами в хромосоме можно судить по частоте перекреста.

    Итак, сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Перекрест, происходящий между гомо­логичными хромосомами, постоянно осуществляет «перетасов­ку» — рекомбинацию генов. Т. Морган и его сотрудники пока­зали, что, изучив явление сцепления и перекреста, можно по­строить карты хромосом с нанесенным на них порядком распо­ложения генов. Карты, построенные по этому принципу, созда­ны для многих генетически хорошо изученных объектов: куку­рузы, мыши, дрожжей, гороха, пшеницы, томата, пло­довой мушки дрозофилы.

    Как геологу или моряку совершенно необходима географи­ческая карта, так и генетику крайне необходима генетическая карта того объекта, с которым он работает. В настоящее время создано несколько эффективных методов построения генетичес­ких карт. В результате возникла возможность сравнивать стро­ение генома, т. е. совокупности всех генов гаплоидного набора хромосом, у различных видов, что имеет важное значение для генетики, селекции, а также эволюционных исследований.

    2. Симбиотические отношения.

    Лишайник всеми воспринимается как единый орга­низм. На самом же деле он состоит из гриба и водоросли. Основу его составляют переплетающиеся гифы (нити) гриба. В рыхлом слое под поверхностью среди гиф гнездят­ся водоросли. Чаще всего это одноклеточные зеленые водоросли. Совместное существование выгодно и грибу, и водорослям. Гриб дает водорослям воду с растворенными минеральными солями, а получает от водоросли органи­ческие соединения, вырабатываемые ею в процессе фото­синтеза, главным образом углеводы. Симбиоз так хорошо помогает лишайникам в борьбе за существование, что они способны поселятся на песочных почвах, на бесплодных скалах, там, где другие растения существовать не могут.

    3. Основные биологические события палеозоя.

    Палеозой

    Кембрийский, ордовикский периоды- Процветание морских позвоночных, Широкое распространение трилоби­тов, водорослей.

    Силурийский- Развитие кораллов, трилобитов; по явление бесчелюстных позвоночных. Выход растений на сушу.

    Девонский- Появление кистеперых рыб, появле­ние стегоцефалов. Распространение на суше высших споровых растений.

    Каменноугольный- Расцвет земноводных, возникновение пресмыкающихся, появление члени­стоногих; уменьшение числа трибо-литов. Расцвет папоротникообразны появление семенных папоротников.

    Пермский- Развитие пресмыкающихся. Распро­странение голосеменных. Вымирание трилобитов.


                                                     

















    Билет №16

    1. Мутации и наследственная изменчивость.

    Мутации имеют ряд свойств.

    1)  возникают внезапно, и мутировать может любая часть ге­нотипа;

    2)  чаще бывают рецессивными и реже — доминантными;

    3)  могут быть вредными (большинство мутаций), нейтраль­ными и полезными (очень редко) для организма;

    4)  передаются из поколения в поколение;

    5)  представляют собой стойкие изменения наследственного

    материала;

    6)  это качественные изменения, которые, как правило, не об­разуют непрерывного ряда вокруг средней величины при- g знака;

    7)  могут повторяться.

    Мутации могут происходить под влиянием как внешних, так и внутренних воздействий. Различают мутации генеративные — они возникают в гаметах, и соматические — они воз­никают в соматических клетках и затрагивают лишь часть те­ла; такие мутации будут передаваться следующим поколениям только при вегетативном размножении.

    По характеру изменений в генотипе мутации подразделя­ются на несколько видов. Точечные, или генные мутации представляют собой изменения в отдельных генах. Это может произойти при замене, выпадении или вставке одного или не­скольких нуклеотидов в молекуле ДНК.

    Хромосомные мутации представляют собой изменения частей хромосом или целых хромосом. Такие мутации могут происходить в результате делеции — утраты части хромосо­мы, дупликации — удвоения какого-либо участка хромосомы, инверсии — поворота участка хромосомы на 180°, транслока­ции — отрыва части хромосомы и перемещения ее в новое положение, например, присоединения к другой, негомологич­ной, хромосоме. Структурные хромосомные мутации, как пра­вило, вредны для организма.

    Геномные мутации заключаются в изменении числа хро­мосом в гаплоидном наборе. Это может происходить за счет уменьшения или увеличения числа хромосом в гаплоидном наборе. Частный случай геномных, мутаций — полиплоидия — увеличение числа хромосом в генотипе, кратное п. Это яв­ление возникает при нарушении веретена деления при мейозе или митозе. Полиплоиды отличаются мощным ростом, боль­шими размерами. Большинство культурных растений полиплоиды. Тетероплоидия связана с недостатком или избытком хромосом в одной гомологичной паре. Эти мутации вредны для организма; примером может служить болезнь Дауна, при которой в 21-й паре появляется лишняя хромосома.

    Комбинативная изменчивость — также относится к на­следственным формам изменчивости. Она обусловлена пере­группировкой генов в процессе слияния гамет и образования зиготы, то есть при половом процессе. Сходство между комбинативной и мутационной изменчивостью заключается в том, что в обоих случаях потомство получает набор генов каждого из родителей. Однако между этими видами изменчивости есть принципиальные отличия.

    При комбинативной изменчивости в результате слияния родительских гамет возникают новые комбинации генов, од­нако сами гены и хромосомы остаются неизменными.

    При мутационной изменчивости обязательно происходит изменения в самом генотипе: меняются отдельные гены, из­меняется строение хромосом и их число.

    Академик Н.И. Вавилов в течение многих лет исследовал закономерности наследственной изменчивости у дикорасту­щих  и  культурных растений  различных  систематических групп. Эти исследования позволили сформулировать закон гомологических рядов наследственной изменчивости, или закон Вавилова. Формулировка этого закона следующая: генетиче­ски близкие роды и виды характеризуются сходными рядами наследственной изменчивости. Таким образом, зная, какие му­тационные изменения возникают у особей какого-либо вида, можно предвидеть, что такие же мутации в сходных условиях будут возникать у родственных видов и родов.

    Н.И. Вавилов проследил изменчивость множества призна­ков у злаков. Из 38 различных признаков, характерных для всех растений этого семейства, у ржи было обнаружено 37 признаков, у пшеницы — 37, у овса и ячменя — по 35, у куку­рузы — 32. Знание этого закона позволяет селекционерам за­ранее предвидеть, какие признаки изменятся у того или иного вида в результате воздействия на него мутагенных факторов.

    2. Вымершие предки человека.

    Австралопитек Рост 120—140 см; объем черепа 500—600 см3

    Стадный образ жизни. Жили среди скал в от­крытых местах, употребляли мяс­ную пищу.

    Камни, палки, кости животных.

    Человек умелыйРост 135—150 см; объем черепа 650—680 см.

    Стадный образ жизни, совместная охота; мяс­ная пища, ходи­ли на двух но­гах.

    Орудия труда из природных объ­ектов.

    Древнейший че­ловек — питекан­троп Рост 150 см; объем мозга 900—1000 см3, лоб низкий, с надбровным ва­ликом; челюсти без подбородоч­ного выступа.

    Общественный образ жизни; жили в пещерах, пользовались ог­нем.

    Примитивные ка­менные орудия труда, палки.

    СинантропРост 150—160 см; объем мозга 850-1220 см3, лоб низкий, с надбровным ва­ликом, нет под­бородочного выс­тупа.

    Жили стадами, строили прими­тивные жилища, пользовались ог­нем, одевались в шкуры.

    Орудия из камня и костей.

    Древний чело­век — неандерта­лец Рост 155—165 см; объем мозга 1400 см'; извилин ма­ло; лоб низкий, с надбровным ва­ликом; подборо­дочный выступ развит слабо.

    Общественный образ жизни, строительство очагов и жилищ, использование огня для приго­товления пищи, одевались в шку­ры. Использова­ли жесты и при­митивную речь для общения. Появилось разде­ление труда. Первые захороне­ния.

    Орудия труда из дерева и камня, (нож, скребок, многогранные ос­трия и др.).

    Первый совре­менный чело­век — кроманьо­нец Рост до 180 см; объем мозга 1600 см8, лоб высокий; извили­ны развиты; нижняя челюсть с подбородочным выступом.

    Родовая община. Строительство поселений. Появ­ление обрядов. Возникновение искусства, гон­чарного дела, земледелия. Раз­витая речь. При­ручение живот­ных, окультуривание растений.

    Разнообразные орудия труда из кости, камня, дерева

    3. Основные биологические события мезозоя.

    Мезозой

    Триасовый- Расцвет пресмыкающихся, появле­ние костистых рыб, первых млеко­питающих.

    Юрский- Появление археоптерикса, процвета­ние головоногих моллюсков, господ­ство пресмыкающихся. Господство голосеменных.

    Меловой- Вымирание динозавров, появление птиц и высших млекопитающих. Появление и распространение покрытосеменных.


     

     

     

     

    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.