Генетика
Генетика
23. АНАЛИЗ ДИГИБРИДНОГО СКРЕЩИВАНИЯ. ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ И ЕГО ЦИТОЛОГИЧЕСКИЕ ОСНОВЫ. Дигибриды – гибриды, полученные от скрещивания организмов, отличающихся одновременно двумя парами альтернативных признаков. Для первого скрещивания исп-сь гомозиготы, отличающиеся по двум парам признаков (форма и окраска семян). В F1 – единообразие фенотипов – все гетерозиготы (для проверки гетерозиготности этих растений примен-ся анализирующее скрещивание - с дигомозиготой). Растения в F1 с равной вероятностью дают гаметы AB, Ab, aB и ab =>16 равновероятных генотипов =>расщепление 9:3:3:1 по фенотипу (имело место полное доминирование). Вывод: Признаки наследовались независимо. Цитолог.основа – случайность ориентации хромосом в метафазе II мейоза =>случайное сочетание негомологичных хромосом у полюсов клетки =>равная вероятность обр-ия АВ-, Ав-, аВ- и ав-гамет. Пропорции, наблюдавшиеся Менделем соблюд-ся при условии: гомозиготности исх.форм, альт.проявлениях признаков, одинаковой жизнеспособности гамет с разными генотипами, независимости проявления признака от внешн.условиях и генотип.окружения.
22.Взаимодействие аллельных генов: 1.Доминирование – признаки, контролируемые геном в аутосоме перед-ся по аутосомно-доминантн.типу, признаки, контролируемые геном в пол.хромосоме – по сцепленному с полом доминант.типу (перед-ся от отца только дочерям). Некоторые дом.мутации в гомозиг.состоянии – летальные; 2.Неполн.доминирование – как у кур андалузской породы (при скрещивании гомозигот с белым и черным оперением в F1 получают серых кур); 3.Кодоминирование – проявляются оба аллеля у гетерозигот ; 4.Сверхдоминирование, гетерозис – усиление признака у гетерозигот (i.e.большая плодовитость у гетерозиготных мух, чем у исх.форм); 5.Неустойчивая доминантность – проявление признака у гетерозигот зависит от внешних условий и генотип.окружения. 6.Условная доминантность – невозможность выявить гомозигот по домин.аллелю, т.к.такие особи нежизнеспособны.
28.Эпистаз. Доминантный эпистаз – дом.ген подавляет проявление другого дом.гена И РЕЦЕССИВНОГО(ТИПЫ РАСЩИПЛЕНИЯ 13:3, 12:3:1). Двойной ДОМ ЭПОСТАЗ- ПРИ НЕМ ДОМ. АЛЛЕЛИ РАЗЛИЧНЫХ ГЕНОВ ВЗАИМОПОДАВЛЯЮТ ДЕЙСТВИЯ РЕЦЕС-Х АЛЛЕЛЕЙ ЭТИХ ГЕНОВ(А>d, В>а)Рецессивный эпистаз – рец.аллель одного гена НАХОДЯСЬ в гомозиготном состоянии подавляют дом. и рецес. аллели другого гена, а между доминантными генами наблюд-ся комплементарность(9:3:4). При двойном рецес. эпистазе каждая гомозиг.рецесс.аллель подавляет домин.аллель другого гена(9:7). Ген, подавляющий развитие другого признака, называется эпистатичным, а подавляемый — гипостатичным.
1. Предмет генетики.
Наследственность — cв-во живых организмов передавать, при разм-ии , информацию о своих признакх и особенностях разв-я – потомству. . Изменчивость — это возникновение различии между организмами по ряду признаков и свойств в процессе онтогенеза..Наследственность, изменчивость и отбор — основа эволюции. Благодаря им возникло огромное разнообразие живых существ на Земле. Мутации поставляют первичный материал для эволюции. В результате отбора сохраняются положительные признаки . и свойства, которые благодаря наследственности передаются из поколения в поколение. Знание закономерностей наследственности и изменчивости способствует более быстрому созданию новых пород животных, сортов растений и штаммов микроорганизмов. С. М. Гершензон выделяет четыре основные теоретические проблемы, изучаемые генетикой:
1) хранения генетической информации (где и каким образом закодирована генетическая информация);2) передачи генетической информации от клетки к клетке, от поколения к поколению;3) реализации генетической информации в процессе онтогенеза;4) изменения генетической информации в процессе мутаций. Бурное развитие генетики связано с тем, что она открывает возможность познания явлений жизни и намечает пути управления ею. В настоящее время генетика занимает центральное место в биологии. Наблюдается все более тесная интеграция генетики, селекции, ветеринарии, биохимии и других наук. В результате интеграции генетики и ветеринарии возникла ветеринарная генетика.
Виды изменчивости.
1. Генотипическая- способная передаваться по наследству и связана с изменением стр-ры и ф-ций отдельных генов , хромосом или генома в целом…
2. Фенотипическая- не передается по наследству и связана с влиянием факторов среды на организм.
4. МЕТОДЫ И ЗАДАЧИ ГЕНЕТИКИ
Специфические методы генетики.
1. Гибридологический метод (открытый Менделем). Основные черты метода:
а). Мендель учитывал не весь многообразный комплекс признаков у родителей и их потомков, а выделял и анализировал наследование по отдельным признакам (одному или нескольким);
б) Менделем был проведен точный количественный учет наследования каждого признака в ряду последующих поколений.
в) Менделем исследовался характер потомства каждого гибрида в отдельности.
2. Генеалогический метод. В основу метода положено составление и анализ родословных.
Неспецифические методы генетики.
1. Близнецовый метод. Используется, прежде всего, для оценки соотносительной роли наследственности и влияния среды в развитии признака.
2. Цитогенетический метод. Заключается в изучения хромосом с помощью микроскопа.
3. Мутационный метод. Метод обнаружения мутаций в зависимости от особенностей объект» — главным образом способа размножения организма.
4. Рекомбинационный метод. Основан на частоте рекомбинаций между отдельными ларами генов, представленных в одной хромосоме. Позволяет составлять карты хромосом, на которых указывается относительное расположение различных генов.
5. Метод селективных проб (биохимический). С помощью него устанавливают последовательность аминокислот в полипептидной цепи и таким образом определяют генные мутации.
Общие методы:
1. Физические ( микроскопия, ультроцентрифугирование…)
2. Математические ( исп-ся для статистической обработки данных и построения матем-х моделей)
3. Химические ( исп-ся для изучения строения и ф-ций н\к и белков)
Задачи генетики.
1. Изучение материальных основ наслд-ти и измен-тии мех-ов лежащих в основе хранения, передачи и реализации ген.информации.
2. Изучение действия и взаим-я генов в процессе онтогенеза.
3. Изуч-е генетт-х процессов протек-х в природ-х популяциях и опр-х их эволюц-е изменения.
4. Разработка методов диагностики и лечения наслед-х заболеваней.
5. Разработка методов улучшения существ-х и создание новых сортов растений, пород жив-х и штаммов микроорг-ов.
6. Опр-е и сохранение генет-х ресурсов нашей планеты.
16. Митоз.
В основе роста и дифференцировки органов и тканей животных лежит размножение клеток, смена одного клеточного поколения на другое. Клетки тела, или соматические клетки, разных поколении содержат одинаковое количество генетического материала, что обеспечивается особым механизмом деления, получившим название митоз. В процессе митоза выделяют две основные стадии — интерфазу и собственно митоз.
Интерфаза предшествует митозу. В ней выделяют три периода: 1) пресинтетический (Gi); 2) синтетический (S) и 3) постсинтетический (G2). В Gi-периоде в клетке происходит накопление белка, РНК и других продуктов, необходимых для образования клеточных структур и последующего деления. В течение S-периода синтезируется ДНК и происходит ауторепродукция (самоудвоение) хромосом, что приводит к возникновению второй хроматиды. В Зг-пе-риоде продолжается синтез ДНК и белков, накапливается энергия.
Вслед за интерфазой начинается деление клетки — митоз. Выделяют четыре стадии митоза: профазу, метафазу, анафазу, тело-фазу. При изучении митоза основное внимание уделяется поведению хромосом. В профазе хромосомы представляют собой клубок длинных тонких хроматиновых нитей. К концу этой фазы митоза длина их уменьшается за счет спирализации примерно в 25 раз, наблюдается также разрушение ядрышка. Нити веретена прикрепляются к центриолям, которые в этот период уже разделились и находятся на противоположных полюсах клетки. Завершается профаза разрушением ядерной оболочки клетки.
В метафазе утолщенные спирализованные хромосомы перемещаются в экваториальную плоскость клетки. Началом анафазы считают момент разделения удвоенных хромосом на хроматиды, которые затем расходятся к противоположным полюсам клетки.
Во время телофазы сестринские хроматиды достигают противоположных полюсов и деспирализуются. Так формируются два дочерних ядра. Наряду с делением материнского ядра происходит деление цитоплазмы, образование оболочек клеток. Таким образом, в процессе митоза из одной материнской клетки возникают две дочерние, содержащие такой же набор хромосом, как и у исходной клетки . Основное биологическое значение митоза состоит в точном распределении хромосом между двумя дочерними клетками; тем самым сохраняются преемственность хромосомного набора в ряду клеточных поколений и полноценность генетической информации каждой клетки, что необходимо для осуществления общих и специфических функций живого организма.
11. Моногиб-е скрещ-е. 1 и 2 з-ны Менделя. Понятия о генах аллелях. МНОЖЕСТВЕННЫЙ АЛЛЕЛИЗМ.
Моногиб-м скрещ-ем наз-т скрещ-е родит-х форм различ-ся по одной паре альтернативных признаков.
1 з-н Менделя – з-н единообразия гибридов 1-го покаления.
2 з-н Менделя – з-н расщепления (3:1).
ГЕН- единица наслед-ти и измен-ти опред-ая прояв-е отдельного признака или cв-ва организма.
Аллелями наз-т различные состояния одного и того же гена, возн-е в рез-те независимых мутаций.
Аллельными генами (аллелями) называют гены, расположенные в одинаковых точках (локусах) парных гомологичных хромосом. Аллели оказывают влияние на развитие одного и того же признака организма, но выражение признака может быть разным. Различия аллелей возникают путем мутации одного из них. Ген может изменяться и не один раз, по-разному влияя на развитие одного и того же признака. В результате возникает серия аллелей. Это явление получило название множественного аллелизма. Чтобы показать при анализе схем скрещивания, что гены относятся к одной серии аллелей, их обычно обозначают одинаково, но с дополнительной буквой, поставленной сверху мелким шрифтом.По порядку доминирования аллели в своем проявлении располагаются в последовательный ряд. Знаком >обозначают доминирование стоящего перед ним признака над всеми последующими: черный > шиншилла > мардер > гималайский > альбинос.
19. Полигибридное скрещивание.
Полигибридным скрещ-ем наз-т скрещ-е родительских форм различ-ся по 3-м и более парам альтернативных признаков.
Мендель установил, что расщепление по фенотипу при три-гибридном скрещивании представляет собой сочетание трех независимых моногибридных расщеплений. Чем больше признаков, по которым отличаются взятые для скрещивания особи, тем сложнее расщепление и сильнее возрастает комбинативная изменчивость. Для того чтобы понять, почему в пределах популяции каждого вида животных наблюдается такое большое разнообразие в типе телосложения, размерах, продуктивности и т. д., можно произвести простые расчеты при помощи формулы 2я. Цифра 2 показывает, что набор хромосом диплоидный, и — гаплоидное число хромосом у определенного вида животных. Если отец и мать гетерозиготны только по одной какой-то паре аллельных генов, расположенных в каждой паре хромосом, то при полном доминировании каждого из признаков число определяемых этими аллелями возможных различных фенотипов у их потомков будет: у крупного рогатого скота 230, или более миллиарда, у свиней 219, или более 500 тыс., и т. д. Но животные, очевидно, могут отличаться друг от друга и по большему числу пар аллелей. Поэтому потенциальные возможности комбинативной изменчивости огромны, и становится понятным, почему в природе не встречается абсолютно похожих особей, за исключением однояйцевых близнецов.
14.ПРАВИЛО ЧИСТОТЫ ГАМЕТ
Мендель провел опыт по скрещиванию гибридов первого поколения с растениями гороха исходных родительских сортов. Скрещивание гибридов первого поколения (Аа) с особями, сходными по генотипу с родительскими формами (АА или аа), называется возвратным.
При скрещивании растений Fj (Аа) с формой, гомозиготной по доминантному признаку (АА), все потомство по фенотипу получилось однотипным. В этом случае все гаметы родительской формы несли доминантный ген А, у гибридов же образовались гаметы с генами А и а. В результате в потомстве наблюдалось расщепление по генотипу в отношении 2Аа:2АА, или 1:1, в то время как по фенотипу при полном доминировании все потомки были с доминантным признаком.
При скрещивании гибридов Fi (Аа) с родительской формой с рецессивным признаком (аа) у гибрида образовалось также два сорта гамет с генами А и а, у родительской формы — один сорт гамет с геном а. В потомстве получилось 50 % форм с доминантным признаком (Аа) и 50 % с рецессивным (аа). Наблюдалось расщепление по фенотипу и генотипу 1:1. Мендель обнаружил, что в этом случае потомство как бы повторяет состав гамет гибрида первого поколения. Это происходит потому, что фенотип потомка зависит от типа гамет родителя с доминантным признаком. Если от него в зиготу к рецессивному гену а попадает ген А, определяющий доминантный признак, то проявляется его влияние и потомство будет с доминантным признаком. Если же к гену а, определяющему рецессивный признак, присоединяется такой же (а), то потомок будет с рецессивным признаком.
На основании опытов по анализирующему скрещиванию и скрещиванию гибридов первого поколения Мендель пришел к выводу о том, что рецессивные наследственные задатки в гетерозиготном организме остаются неизменными и вновь проявляются при встрече с такими же рецессивными наследственными задатками. Позднее на основании этих наблюдений У. Бетсон сформулировал правило чистоты гамет (иногда его называют законом). Сущность правила чистоты гамет состоит в том, что у гетерозиготной особи наследственные задатки не смешиваются друг с другом, а передаются в половые клетки в «чистом» (неизменном) виде.
30.Гены-модификаторы. Плейотропия.
Гены, не проявляющие собственного действия, но усиливающие или ослабляющие эффект действия других генов, называются генами-модификаторами. Гены-модификаторы играют, по-видимому, определенную роль в формировании у животных резистентности к инфекционным болезням. Например, скот герефордской породы имеет белую голову, и при пастбищном содержании в условиях сильной солнечной инсоляции животные с непигментированными и слабопигментирован-ными веками болеют раком глаз. При усилении пигментации век частота заболевания уменьшается, а при интенсивной пигментации в тех же условиях болезнь не возникает. Оказалось, что интенсивность пигментации кожи вокруг глаз у белоголовых животных наследственна. Это говорит о существовании генов — модификаторов основного гена, обусловливающего белую окраску головы. Таким образом, путем селекции можно избавиться от заболевания глаз раком. Плейотропия-это влияние одного гена на развитие двух и более признаков (множественное действие гена). Явление плейотропии объясняется тем, что гены плейотропного действия контролируют синтез ферментов, которые участвуют в многочисленных обменных процессах в клетке и в организме в целом и тем самым одновременно влияют на проявление и развитие других признаков.
На основании рассмотренного действия генов-модификаторов, и плейотропного действия генов можно видеть, что формирование признака — очень сложное явление в котором участвует не один ген, а в определенной степени весь генотип особи.
31.Полимерия.
При полимерии, или полимерном (полигенном) наследовании, на один и тот же признак влияют несколько разных, но сходно действующих неаллельных генов. Каждый из них усиливает развитие признака. Такие однозначно действующие гены называются аддитивными. Впервые этот тип взаимодействия генов установлен Нильсоном-Эле при изучении наследования окраски чешуи овса и зерен пшеницы.
На степень развития окраски влияет количество доминантных генов, влияющих на формирование этого признака. При отсутствии доминантных генов окраска зерна пшеницы белая.
Полимерный тип взаимодействия генов имеет большое значение для понимания наследования количественных признаков. Эти признаки не обладают фенотипической дискретностью, и их невозможно распределить по четким фенотипическим классам. Их оценивают с помощью количественных методов учета. К количественным относятся признаки, характеризующие продуктивность животных: удой за лактацию, масса животного, настриг шерсти, масса яйца. В некоторых случаях полигенно наследуется резистентность к неблагоприятным условиям внешней среды. Все эти признаки формируются под влиянием многих генов, каждый из которых усиливает развитие признака.
58. Соматический кроссинговер.
Сущность соматического кроссинговера заключается в том, что он осуществляется при митотическом делении соматических клеток главным образом эмбриональных тканей. Кроссинговер происходит между двумя несестринскими хроматидами гомологичных хромосом.
У гетерозиготных особей наблюдаются отклонения в проявлении нормальных "признаков. Явление соматического кроссинговера было предсказано А. С. Серебровским в 1922 г. при анализе причин появления исключительных перьев у кур. В 1936 г. соматический кроссинговер обнаружил К. Штерн у дрозофилы. Он исследовал самок серых с нормальными щетинками, но гетерозиготных (АаВЬ) по рецессивным генам желтой окраски тела (о) и опаленных щетинок (Ь). На теле некоторых серых с нормальными щетинками мух наблюдались двойные пятна. Половина пятна желтая с нормальными щетинками и половина серая, но с опаленными щетинками. Появление двойных пятен К. Штерн объяснил митотическим кроссинговером, в результате которого образуется часть клеток, гомозиготных по желтой окраске тела (аа), и часть, гомозиготных по опаленным щетинкам (Jbb). Эти клетки становятся родоначальницами при образовании участков тела с желтой окраской и нормальными щетинками и с нормальной серой окраской и опаленными щетинками. В этом случае проявляется действие рецессивных генов, оказавшихся в гомозиготном состоянии. Таким образом, осуществление кроссинговера в соматических клетках ведет к появлению мозаиков.
Кроссинговер иногда происходит и на стадии размножения при образовании половых клеток, когда гонии еще имеют диплоидное число хромосом. В этом случае процент кроссоверных гамет может быть очень высоким.
Частота митотического кроссинговера ниже мейотического, однако его также можно использовать для генетического картирования. Соматический кроссинговер имеет место у животных, растений и человека.
26. Мейоз.
Мейоз I (редукционное деление). Профаза I: спирализация и укорочение хромосом. Гомологичные хромосомы коньигируют по всей длине =>бивалент. !Возможен обмен участками (кроссинговер) между несестринскими хромосомами. В точке обмена – Х-образная структура (хиазма). Стадии профазы I – лептотена (в ядре – длинные тонкие нити хромосом), зиготена (начало коньюгации гомол.хромосом), пахитена (отдельные гомологи в биваленте уже неразличимы), диплотена (видны хроматиды и хиазмы) и диакинез (max укорочение хромосом, центромеры гомологов отталкив-ся друг от друга, ядрышко, ядерн.мембрана, формир-ся веретено деления). Метафаза I: биваленты – в экват.плоск-ти, центромеры ориент-ся случайно. Анафаза I: Гомол.хромосомы отщепл-ся друг от друга, движ-ся к полюсам =>на полюсах – по две хроматиды. Интеркинез (если оч.долгий – хромосомы могут временно декомпактиз-ся). Мейоз II (эквационное деление). Профаза II: восст-ся веретено деления. Метафаза II: хромосомы – в экват.плоск-ти. Анафаза II: расщепление центромер, хромосомы – к против.полюсам. Телофаза II:
1902 г – Сэттон и Бовери сравнивают поведение признаков при наследовании и хромосом при мейозе =>вывод: «Наследст.факторы расп-ны в хромосомах». Доказ-ва: 1.В ядре сомат.клетки – 2 гомолог.хромосомы и 2 аллеля одного гена. 2.Гаметы несут по одной хромосоме и по одной аллели (правило чистоты гамет). 3.При оплодотворении организм получает по гомол.хромосоме и от отца, и от матери, и по аллелю от каждого из родителей. 4.Ориентация негомол.хромосом отн.друг друга случайна, неаллельные гена наслед-ся независимо.
52.Хромосомная теория опр-я пола. Гомо и гетерогаметный пол…
В ходе эволюции у большинства раздельнополых организмов сформировался механизм детерминации пола, обеспечивающий образование равного количества самцов и самок, что необходимо для нормального самовоспроизведения вида. Детерминация пола может происходить на разных этапах размножения. Различают три основных типа детерминации:
1) эпигамный, когда пол особи определяется в процессе онтогенеза. Детерминация пола в данном случае значительно зависит от внешней среды;
2) прогонный, когда пол будущего дочернего организма определяется в ходе гаметогенеза у родителей особи;
3) сингамный, при котором пол дочерней особи определяется в момент слияния гамет. Это наиболее распространенный тип детерминации пола, характерный для животных всех видов.
При прогамном и сингамном типах детерминации пол зависит от определенных половых хромосом.
У самок млекопитающих в диплоидном наборе хромосом выделяют пару одинаковых по форме гоносом (половых хромосом), обозначаемых ХХ-хромосомами. Самцы в кариотипе содержат Х- и Y-хромосомы. Самки птиц содержат две разные (XY), а самцы одинаковые (XX) половые хромосомы. В период редукционного деления (мейоза) у самок млекопитающих образуется один тип гамет с Х-хромосомой, поэтому женский пол называют гамогаметным. У самцов образуется два типа гамет с Х- и Y-хромосомами, поэтому мужской пол называют гетерогаметным. Определение пола млекопитающих зависит от того, каким спермием будет оплодотворена яйцеклетка. Если яйцеклетка оплодотворена спермием, содержащим Х-хромосому, то происходит закладка особи женского пола, если спермий несет Y-хромосому — закладывается особь мужского пола.
Самцов обычно рождается на несколько процентов больше, чем самок, но в ходе эволюции выработался механизм сохранения числового соотношения полов, поэтому к возрасту половой и физиологической зрелости это соотношение выравнивается вследствие более высокой смертности самцов.
ЦИТОЛОГ-Е ОСОБ-ТИ ПОЛОВЫХ ХРОМОСОМ:
1. Вполовых хромосомах больше гетерохроматина, чем в аутосомах.
2. Репродукция половых хром-м и аутосом происходит не одновраменно.
3. У гомогаметного пола одна из Х-хром-м нах-ся в сверх спирализованном состоянии, в интерфазе.
4. У гомогаметного пола одна из Х-хром-м может репродуцироваться позже чем другая.
5. У гетерогаметного пола У-хром-ма гораздо меньше чем Х-хром-ма.
54. НАСЛЕДОВАНИЕ ПРИЗНАКОВ, СЦЕПЛЕННЫХ С ПОЛОМ.
Причины более высокой смертности среди самцов млекопитающих можно объяснить исходя из особенностей наследования признаков, сцепленных с полом. Явление сцепленного с полом наследования впервые открыл Т. Морган при скрещивании мух-дрозофил с красной и белой окраской глаз. Признаки, расщепление по которым при скрещивании связано с полом, называют сцепленными с полом. Эти признаки обусловливаются генами, локализованными в половых хромосомах. Установлено, что наследование их зависит в основном от Х-хромосомы. Y- хром-ма имеет небольшие размеры, состоит преимущественно из гетерохроматина и является генетически инертной, за исключением, возможно, некоторых генов, контролирующих воспроизводительную функцию и признаки пола. У самцов млекопитающих гены, локализованные в Х-хромосоме, не имеют доминантных или рецессивных аллелей на Y-хром-ме. Рецессивные гены у них проявляют свое действие уже в одинарной дозе (гемизиготном состоянии) по типу доминантного.
Особенности наслед-я признаков сцепленных с полом:
1. Различия в рез-ах рецепроктных скрещиваний.
2. Крисс-кросс мех-м наслед-я , т.е. передача признаков от матери к сыновьям и от отца к дочерям.
3. Генетическая инертность У-хром-мы у гетерогаметного пола приводит к гемизиготному состоянию генов нах-ся в Х-хром-ме.
Данные особ-ти вып-ся только при нормальном расхождении половых хромосом в мейозе.
65. Закон гомологичных рядов наследственной изменчивости Н.И.Вавилова.
Крупнейшим обобщением работ по изучению изменчивости в начале XX в. стал закон гомологических рядов в наследственной изменчивости Н.И.Вавилова (1920г,III Всерос. селекц. съезд,Саратов). Согласно этому закону близким видам и родам организмов свойственны сходные ряды наследственной изменчивости. Чем ближе таксономически рассматриваемые организмы, тем большее сходство наблюдается в ряду (спектре) их изменчивости. З-н Вавилова имеет большое значение для селекционной практики, поскольку прогнозирует поиск определенных форм культурных растений и животных. Зная характер изменчивости одного или нескольких близких видов, можно целенаправленно искать формы, еще не известные у данного организма, но уже открытые для его таксономических родственников. З-н гомолог. рядов заложил основы сравнительной генетики.
33. Анеуплоидия.
Анеуплоидия - числовые аномалии кариотипа. Числовые аномалии хромосом относят к вновь возникающим мутациям. Однако имеются исследования, которые показывают, что может быть семейная предрасположенность к анеуплоидии. Так, Герцог, Хен и Олишлегер при описании шести случаев трисомии по 17-й хромосоме (новой форме трисомии у крупного рогатого скота), сочетающейся с синдромом общего недоразвития телят, гидроцефалией, аномалиями сердца указывают на генетическую предрасположенность к нерасхождению хромосом.
С. Г. Куликова обнаружила трисомию по 19-й паре хромосом, которая ассоциировалась с прогнатией нижней челюсти у теленка.
Гаметы с трисомией, моносомией, нуллисомией и полисомией обычно вызывают летальный исход уже на ранних стадиях эмбрионального развития и являются продуктом нарушения спермио- или овогенеза у носителей транслокаций. После рождения наблюдают числовые нарушения только по мелким аутосомам и половым хромосомам.
Гетероплоидия - изменение числа хромосом , не кратное гаплоидному набору. В результате возникают особи с аномалным числом хромосом: моносомики (2н – 1), у которых не хватает одной хромосомы в какой либо паре, и полисомики, у которых одна из хромосом может быть повторена несколько раз (например, трисомики – 2н + 1 тетра – 2н + 2) У человека одна добавочная хромосома может вызвать болезнь Дауна. Недостаток одной Х-хромосомы у женщин приводит к потере признаков пола (моносомия).
61. Полиплоидия и ее значения.
Полиплоидия (тут- «полп» - много, «плоид» - складывать) увеличение числа хромосом, кратное (эуплоидия) и некратное(анэуплоидия) гаплойдному набору: 3н - триплоид 4н тетраплоид. Причина возникновения -
удвоение хромосом без последующего деления клетки либо не расхождение хромосом в результате блокады работы веретена деления. Среди животных встречается крайне редко (тутовый шелкопряд). У растений распространено очень широко. В пределах? одного рода различные виды часто образуют полиплоидные ряды. Так, род картофель имеет виды с 12, 24, 36,48, 60, 73, с 144 хромосомами. Полиплоидные растения имеют более широкую норму реакции и,, следовательно, легче приспосабливаются к неблагоприятным условиям внешней среды. В северных и высокогорных районах полиплоиды составляют более 80%, от общего числа распространенных там видов растений. Полиплоидные формы известны в декоративном цветоводстве, например тюльпаны, нарциссы, гладиолусы, имеющие крупные цветки. Некоторые полиплоиды имеют неполноценную семенную продуктивность вследствие того, что у их триплоидных форм при мейозе часть хромосом не находит себе пары и при этом образуются половые клетки с несбалансированным набором хромосом, которые затем погибают, что приводит к снижению плодовитости или к полной бесплодности (так могут' быть получены бессемянные плоды). В тетраплоидном же организме набор хромосом обычно бывает парным и мейоз идет нормально, что обеспечивает высокую семенную продуктивность растений.
49. Явлениесцепления генов. Группы сцепления.
Гены, расположенные в одной хромосоме, представляют собой группу сцепления.
Сцепление генов — это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом. Например, у дрозофилы 4 группы сцепления, у человека 23, у крупного рогатого скота 30, у свиней 19 и т. д.
Исследования, проведенные Морганом, показали, что сцепление генов, расположенных в одной хромосоме, может быть полным или неполным.
ПОЛНОЕ СЦЕПЛЕНИЕ
Т. Морган скрещивал черных длиннокрылых самок с серыми с зачаточными крыльями самцами. У дрозофилы серая окраска тела доминирует над черной, длиннокрылость — над зачаточными крыльями. Обе пары этих генов нахо-дятся в одной и той же второй паре хромосом. По обеим парам признаков родительские формы были гомозиготны. В дальнейшем было проведено анализирующее скрещивание, в результате которого при независимом комбинировании признаков должны были бы получить потомство четырех фенотипов в равных соотношениях. В этом случае наблюдается полное сцепление признаков. При полном сцеплении гены, расположенные в одной хромосоме, всегда передаются вместе. Полное сцепление пока установлено только у самцов дрозофилы и самок тутового шелкопряда.
НЕПОЛНОЕ СЦЕПЛЕНИЕ
В следующем опыте, так же как и в предыдущем, Морган скрещивал черных длиннокрылых самок с серыми зачаточно-крылыми самцами. В первом поколении получил все потомство серое длиннокрылое. Затем снова произвел анализирующее скрещивание, но из первого поколения отобрал не самца, а самку и скрестил ее с черным с зачаточными крыльями самцом (рис. 14). В этом случае появилось потомство не двух типов, как при полном сцеплении, а четырех. Таким образом, 83 % потомков имели сочетание признаков, как у исходных родительских форм, но появились особи и с новым сочетанием признаков. Следовательно, сцепление является неполным. Обмен гомологичных хромосом своими частями называется перекрестом или кроссинговером (английское слово crossingover означает образование перекреста). Особей с новыми сочетаниями признаков, образовавшимися в результате кроссинговера, называют кроссоверами.
18.Морфологическое строение и химический состав хромосом.
Они состоят из двух нитей — хроматид, расположенных параллельно и соединенных между собой в одной точке, названной центромерой или первичной перетяжкой. На некоторых хромосомах можно видеть и вторичную перетяжку. Если вторичная перетяжка расположена близко к концу хромосомы, то дистальный участок, ограниченный ею, называют спутником. Концевые участки хромосом имеют особую структуру и называются теломерами. Участок хромосомы от теломеры до центромеры называют плечом хромосомы. Каждая хромосома имеет два плеча. В зависимости от соотношения длин плеч выделяют три типа хромосом: 1) метацентрические (равноплечие); 2) субметацентрические (неравноплечие); 3) акроцентрические, у которых одно плечо очень короткое и не всегда четко различимо.
Наряду с расположением центромеры, наличием вторичной перетяжки и спутника важное значение для определения отдельных хромосом имеет их длина. Для каждой хромосомы определенного набора длина ее остается относительно постоянной. Измерение хромосом необходимо для изучения их изменчивости в онтогенезе в связи с болезнями, аномалиями, нарушением воспроизводительной функции.
Тонкое строение хромосом. Химический анализ структуры хромосом показал наличие в них двух основных компонентов: дезоксирибонуклеиновой кислоты (ДНК) и белков типа гистонов и протомите (в половых клетках). Исследования тонкой субмолекулярной структуры хромосом привели ученых к выводу, что каждая хроматида содержит одну нить — хромонему. Каждая хромонема состоит из одной молекулы ДНК. Структурной основой хроматиды является тяж белковой природы. Хромонема уложена в хроматиде в форму, близкую к спирали. Доказательства этого предположения были получены, в частности, при изучении мельчайших обменных частиц сестринских хроматид, которые располагались поперек хромосомы.
Кариотип.
При анализе наборов хромосом в клетках разных видов были выявлены различия по числу хромосом или их строению либо те и другие одновременно. Совокупность количественных и структурных особенностей диплоидного набора хромосом вида получила название кариотипа. По определению С. Г. Навашина, кариотип — это структура — своеобразная формула вида. В кариотипе заложена генетическая информация особи, изменения которой влекут за собой изменения признаков и функций организма данной особи или ее потомства. Поэтому так важно знать особенности нормального строения хромосом, чтобы при возможности суметь выявить изменения в кариотипе.
10.СТРОЕНИЕ ДНК. СТРУКТУРА НУКЛЕИНОВЫХ КИСЛОТ
Нуклеиновые кислоты впервые открыл И. Ф. Мишер в 1868 г. Он выделил из ядер клеток особое вещество кислотной природы и назвал его нуклеином. Впоследствии ему дали название «нуклеиновая кислота». Было обнаружено два типа нуклеиновых кислот. Их назвали в зависимости от углеводного компонента, входящего в состав. Нуклеиновую кислоту, в состав которой входит углевод дезоксирибоза, назвали дезоксирибонуклеиновой кислотой (ДНК), а в состав которой входит углевод рибоза, —рибонуклеиновой кислотой (РНК). В период с 1900 по 1932 г. был определен химический состав нуклеиновых кислот. Они включают следующие компоненты:
ДНК РНК
Пуриновые основания Аденин, гуанин Аденин, гуанин
Пиримидиновые основания Цитозин, тимин Цитозин, урацил
Углеводный компонент Дезоксирибоза Рибоза
Обе нуклеиновые кислоты включают остатки фосфорной кислоты. Различие заключается в том, что в состав РНК входит азотистое основание урацил вместо тимина и рибоза вместо дезоксирибозы.
К 1952 г. Р. Франклин и М. Уилкинс добились получения высококачественных рентгенограмм ДНК, показавших, что она имеет форму спирали и двойственную структуру.
Согласно их модели Дж. Уотсон и Ф. Крика молекула ДНК имеет двойную спираль, состоящую из двух полинуклеотидных цепей с общей осью.
Структурными единицами полинуклеотидных цепей являются нуклеотиды. В состав нуклеотида входят: одно из азотистых оснований — пуриновое (аденин или гуанин) или пиримидиновое (тимин или цитозин), дезоксирибоза, фосфатный остаток.
В каждой из цепей ДНК нуклеотиды последовательно соединены друг с другом с помощью остатка фосфорной кислоты и молекулы дезоксирибозы. Дезоксирибоза связывается с одной молекулой фосфорной кислоты через углерод в положении 3', а с другой — через углерод 5', образуя углеводно-фосфатный остов.
Обе цепи в молекуле ДНК имеют противоположную полярность. Это означает, что межнуклеотидная связь в одной цепи
имеет направление 5'->3', а в другой 3'->5'.
Нуклеотидный состав ДНК значительно варьирует в зависимости от принадлежности организма к той или иной систематической группе. Специфичность ДНК выражается соотношением А + Т/Г + Ц, получившим название коэффициента видовой специфичности.
В ДНК животных наблюдается избыток А + Т по отношению к Г + Ц. У грибов и бактерий встречаются формы как богатые А + Т, так и с преобладанием Г + Ц, в то же время есть близкие по коэффициенту специфичности к животным. Это говорит о том, что изменчивость в расположении оснований уже достаточна для того, чтобы обеспечить различия между генами этих организмов.
Молекулы ДНК имеют большую относительную молекулярную массу.
27. Понятие о наслед-ти и изменчивости. Клетка – как материальная основа наследственности.
Наследственность — cв-во живых организмов передавать, при разм-ии , информацию о своих признакх и особенностях разв-я – потомству. . Изменчивость — это возникновение различии между организмами по ряду признаков и свойств в процессе онтогенеза.. Виды изменчивости.
1. Генотипическая- способная передаваться по наследству и связана с изменением стр-ры и ф-ций отдельных генов , хромосом или генома в целом…
2. Фенотипическая- не передается по наследству и связана с влиянием факторов среды на организм.
Наследственность, изменчивость и отбор — основа эволюции. Благодаря им возникло огромное разнообразие живых существ на Земле. Мутации поставляют первичный материал для эволюции. В результате отбора сохраняются положительные признаки . и свойства, которые благодаря наследственности передаются из поколения в поколение. Знание закономерностей наследственности и изменчивости способствует более быстрому созданию новых пород животных, сортов растений и штаммов микроорганизмов.
Ядро — основной компонент клетки, несущий генетическую информацию. Оно может находиться в двух состояниях: покоя — интерфазы и деления — митоза или мейоза. Интерфазное ядро представляет собой круглое образование с многочисленными глыбками белкового вещества, названного хроматином. Выделяют два типа хроматина: гетерохроматин и эухроматин. Первый из них можно наблюдать в интерфазном ядре под световым, второй — только под электронным микроскопом. Гетерохроматин и эухроматин выполняют разные функции в генетическом контроле биосинтеза белков.
Детальное изучение ядра под электронным микроскопом показало, что хроматин состоит из очень тонких нитей, получивших название хромосом. Именно в них заложена основная часть генетической информации индивидуума.
В ядрах клеток обнаруживаются округлые тельца, называемые ядрышками. Количество их в зависимости от типа клеток неодинаково. По современным данным, на ядрышках осуществляется синтез рибосомной рибонуклеиновой кислоты (рРНК), а также ядерных белков (гистонов). Участки, или районы, хромосом, где происходит синтез рРНК, называют организаторами ядрышка. Учеными обнаружены изменчивость в ядрышко образующих районах хромосом свиней и связь этого явления с отдельными болезнями, в частности с прогрессирующей атаксией и синдромом нарушения координации движений.
8. Реципрокное, возвратное и анализирующее скрещивания. Значение анализирующего скрещивания.
Реципрокное скрещ-е – 2 скрещ-я ( прямое и обратное), к-е различ-ся по тому какая особь: материнская или отцовская вносит в скрещ-е домен-й или рецес-й признак. Их исп-т для опр-я расположения генов. Если ген расп-ся в аутосоме, то рез-ты прямого и обратного скрещ-й будут одинаковыми, а если он расп-ся в Х-хром-ме , то рез-ты будут различными.
Возвратное скрещ-е – скрещ-е гибрида на одну из родительских форм. Его исп-т для насыщения генотипов гибрида, генами одного из родителей.
Анализирующее скрещ-е – скрещ-е формы, генотип которой неизвестен с формой гомозиготной по рецессиву (линия анализатор).Анализирующее скрещивание широко применяется при гибридологическом анализе, когда нужно установить генотип интересующей нас особи.
50. Интерференция и коинценденция.
Генетическая интерференция – кроссенговер прошедший на одном участке хром-мы, подавляющий кроссенговер на близ лежащих участках. Величину интерференции определяют по формуле I= 1 — С. Если С < 1, то интерференция положительная, т. е. одиночный обмен препятствует обмену на соседнем участке хромосомы. Если С>1, то интерференция отрицательная, т.е. один обмен как бы стимулирует дополнительные обмены на соседних участках. В действительности существует только положительная интерференция.
Отношение практич-й и теоритич-й ожидаемой величины 2-го кроссенговера наз-ся генетической коинцинденцией.
51.Генетически карты.
Генетически карты- граф-е изображение групп сцепления с указанием распол-я и расстояния м-у генами.
В настоящее время карты групп сцепления построены для многих генетических объектов: от бактериофагов до человека.
Осн-е этапы картир-я гена:
1. Опр-е группы сцепления в к-й нах-ся картир-й ген.
2. Опр-е точной локализации гена в найденной группе сцепления.
Опре-е группы сцепления в к-й может нах-ся картир-й ген начинается с опр-я того нах-ся он в аутосоме, либо сцеплен с полом. Это опр-е по рез-м рецепрокных скрещ-й. Если они совпадают, то ген расположен в аутосоме, если различны, то сцеплен с полом.
29.Двойной и множественный кроссинговер.
Морган предположил, что кроссинговер между двумя генами может происходить не только в одной, но и в двух и даже большем числе точек. Четное число перекрестов между двумя генами, в конечном счете, не приводит к их перемещению из одной гомологичной хромосомы в другую, поэтому число кроссинговеров и, следовательно, расстояние между этими генами, определенное в эксперименте, снижаются. Обычно это относится к достаточно далеко расположенным друг от друга генам. Естественно, что вероятность двойного перекреста всегда меньше вероятности одинарного. В принципе она будет равна произведению вероятности двух единичных актов рекомбинации. Например, если одиночный перекрест будет происходить с частотой 0,2, то двойной – с частотой 0,2 ? 0,2 = 0,04. В дальнейшем, наряду с двойным кроссинговером, было открыто и явление множественного кроссинговера: гомологичные хроматиды могут обмениваться участками в трех, четырех и более точках.
57. Неравный кроссинговер.
Это явление было детально изучено на примере гена Bar (В – полосковидные глаза), локализованного в Х-хромосоме D. melanogaster. Неравный кроссинговер связан с дупликацией какого-либо участка в одном из гомологов и с утратой его в другом гомологе. Обнаружено, что ген В может присутствовать в виде следующих друг за другом, повторов, состоящих из двух и даже трех копий. Цитологический анализ подтвердил предположение о том, что неравный кроссинговер может вести к тандемным дупликациям. Предполагается, что в эволюции неравный кроссинговер стимулирует создание тандемных дупликаций различных последовательностей и использование их в качестве сырого генетического материала для формирования новых генов и новых регуляционных систем.
34. Цитологическое доказательство кроссинговера.
Рассмотрим опыт Штерна, проведенный на D. melanogaster. Обычно две гомологичные хромосомы морфологически неразличимы. Штерн исследовал Х-хромосомы, которые имели морфологические различия и, следовательно, были гомологичны не полностью. Однако гомология между этими хромосомами сохранялась на большей части их длины, что позволяло им нормально спариваться. Одна из Х-хромосом самки в результате перемещения фрагмента Y-хромосомы, приобрела Г-образную форму. Вторая Х-хромосома была короче нормальной, так как часть ее была перенесена на IV хромосому. Были получены самки, гетерозиготные по указанным двум, морфологически различным, Х-хромосомам, а также гетерозиготные по двум генам, локализованным в Х-хромосоме. Цитологическое исследование показало, что у кроссоверных особей произошел обмен участками Х-хромосом, и, соответственно, изменилась их форма. Все четыре класса самок имели по одной нормальной, т. е. палочковидной, хромосоме, полученной от отца. Кроссоверные самки содержали в своем кариотипе преобразованные в результате кроссинговера Х-хромосомы – длинную палочковидную или двуплечую с короткими плечами. Эти опыты, так же как и одновременно полученные аналогичные результаты на кукурузе, подтвердили гипотезу Моргана и его сотрудников о том, что кроссинговер представляет собой обмен участками гомологичных хромосом и что гены действительно локализованы в хромосомах.
35. Кроссинговер.
Кроссинговер- обмен идентичными участками гомологичных хром-м, приводящий к перекомбинации генов расп-х в этих хром-х. При кроссинговере происходит разрыв двойной спирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются "наперекрест". Рекомбинация происходит в профазе первого деления мейоза, когда две сестринские хроматиды так тесно сближены друг с другом, что их невозможно увидеть в отдельности. Гораздо позже в этой растянутой профазе становятся ясно различимы две отдельные хроматиды каждой хромосомы. В это время видно, что они связаны своими центромерами и тесно сближены по всей длине. Два гомолога остаются связанными в тех точках, где произошел кроссинговер между отцовской и материнской хроматидами. В каждой такой точке, которую называют хиазмой , две из четырех хроматид перекрещиваются Таким образом, это морфологический результат произошедшего кроссинговера, который сам по себе недоступен для наблюдения.
Закон Т. Моргана.
Соотношение кроссов-х и некроссов-х особей в потомстве анализ-го скрещ-я явл-ся рез-ом обр-я и слияния кроссов-х и некроссов-х гамет.
Некроссов-е гаметы- обр-ся без участия кроссинговера. Кроссов-е наоборот+ нар-ся сцепление генов.
Рекомбинантные организмы- обр-ся в рез-те слияния кроссов-х гамет с гаметами линии анализаторов. Нерекомбин-е организмы- наоборот.
45. Половой хроматин
Плотное окрашивающееся тельце, обнаруживаемое в недслящихся ядрах клеток у гетерогаметных (имеющих Х и Y половые хромосомы) животных и человека. П. х. подразделяют на Х-хроматин, или тельце Барра и Y-хроматин. Х-хроматин — интенсивно окрашивающееся основными красителями тельце, чаще прилегающее к ядерной оболочке и имеющее треугольную полулунную или округлую форму. Y-хроматин значительно меньше по размерам. У особей женского пола (тип XX) одна из Х-хромосом неактивна, что проявляется в её более сильной спирализации и уплотнении. В интерфазном ядре эта спирализованная Х-хромосома и видна в виде Х-хроматина. Y-хроматин у человека и некоторых приматов имеет большой гетерохроматиновый участок. Х-хроматин более или менее часто встречается у женщин в ядрах клеток всех тканей (например, в клетках эпителия слизистой оболочки рта в 15—60% ядер). Число ядер с Х-хроматином зависит от интенсивности размножения клеток в данной ткани и от гормонального состояния организма. Изменение количества П. х. свидетельствует об изменении количества половых хромосом. Определением П. х. широко пользуются для установления пола ребёнка (что ныне возможно и до его рождения и необходимо в случае наследования болезней, сцепленных с полом).
37. Предмет селекции, ее задачи и методы.
Селекция — это наука о путях создания новых и улучшения уже существующих сортов культурных растений, пород домашних животных и штаммов микроорганизмов с ценными для практики признаками и свойствами.
Задачи современной селекции
1. Создание новых и совершенствование старых сортов, пород и штаммов с хозяйственно-полезными признаками.
2. Создание технологичных высокопродуктивных биологических систем, максимально использующих сырьевые и энергетические ресурсы планеты.
3. Повышение продуктивности пород, сортов и штаммов с единицы площади за единицу времени.
4. Повышение потребительских качеств продукции.
5. Уменьшение доли побочных продуктов и их комплексная переработка.
6. Уменьшение доли потерь от вредителей и болезней.
Цели и задачи селекции как науки обусловлены уровнем агротехники и зоотехники, индустриализации растениеводства и животноводства. Например, выведены породы кур, не снижающие продуктивности в условиях большой скученности животных на птицефабриках. Для России и Беларуси очень важно создание сортов, продуктивных в условиях мороза без снега при ясной погоде, поздних заморозков и т. д.
Методы селекции:
1. Полевые методы
2. Лабораторные методы
3. Лабораторно-полевые методы
4. Гибридизация и искусственный отбор.
В последние годы особое значение приобретает селекция ряда насекомых и микроорганизмов, используемых с целью биологической борьбы с вредителями и возбудителями болезней культурных растений.
46.Полная информация о понятии Тетрадный анализ
Согласно общепринятому определению, Тетрадный анализ, метод генетического анализа низших эукариотных организмов, основанный на одновременном изучении генотипов всех четырёх гаплоидных продуктов мейоза отдельной диплоидной клетки. У некоторых грибов, водорослей, мхов после мейотического деления образуются тетрады (четвёрки спор), остающиеся внутри оболочки родительской клетки. Изолируя в ходе Т. а. споры каждой отдельной тетрады, можно не только устанавливать генотип исходных диплоидных клеток, но и следить за поведением отдельных генов, центромер и целых хромосом в мейозе. С помощью Т. а. у мхов было впервые доказано, что менделевское расщепление генов. Предпосылкой для использования Т. а. в современной генетике служит то, что любая пара аллельных генов даёт в тетрадах расщепление 2:2. В некоторых экспериментах наблюдаются отклонения от подобного расщепления. В тех случаях, когда эти отклонения очень редки, обнаружить и изучить их можно практически только с помощью Т. а.
53. Половая дифференциация.
Половая дифференциация – совокупность генетических, морфологических и физиологических признаков, на основании которых различаются мужской и женский пол. Половая дифференциация – это фундаментальное и универсальное свойство живого, связанное с функцией воспроизведения себе подобных.
63. Генетический гомеостаз.
Генетический гомеостаз - поддержание под влиянием естественного отбора частоты генов в популяции на определенном, относительном постоянном уровне.
Гомеостаз выражается в относительном постоянстве химического состава, осмотическом давлении, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом. Живой организм - открытая система, имеющая связь с окружающей средой посредством нервной, пищеварительной, дыхательной, выделительной систем и др. В процессе обмена веществ с пищей, водой, при газообмене в организм поступают разнообразные химические соединения, которые в организме подвергаются изменениям, входят в структуру организма, но не остаются постоянно. Усвоенные вещества распадаются, выделяют энергию, продукты распада удаляются во внешнюю среду. Разрушенная молекула заменяется новой и т.д. Целостность структуры полипептидов клетками не нарушается. Т.о., организм - открытая, динамичная система. Рассматривая его, как открытую систему, имеющую множество связей с внешней средой, можно сказать, что эти связи осуществляются через посредство дыхательной и пищеварительной систем, поверхностных кожных рецепторов, опорно-двигательного аппарата. Изменения в окружающей среде прямо или опосредовано воздействуют на указанные системы, вызывая у них соответствующие изменения. Однако эти воздействия обычно не сопровождаются большими отклонениями от нормы благодаря тому, что саморегуляция ограничивает возникающие в организме колебания в сравнительно узких пределах.
Реакции гомеостаза могут быть направлены на 1) поддержание известных уровней стационарного состояния, 2) устранение или ограничение действия вредностных факторов, 3) выработку или сохранение оптимальных форм взаимодействия организма и среды в изменившихся условиях его существования. Все эти процессы и определяют адаптацию. Поэтому понятие гомеостаза означает не только известное постоянство различных физиологических констант организма, но и включает процессы адаптации и координации физиологических процессов, обеспечивающих единство организма не только в норме, но и при изменяющихся условиях его существования.
Генетические механизмы гомеостаза - самовоспроизведение, основанное на редупликации ДНК по принципу комплементарности. В случае нарушения структуры молекул ДНК восстановление генома, исправление повреждения осуществляется посредством репарации. При нарушении репарации - происходит нарушение гомеостатических реакций.
Примерами клеточных механизмов гомеостаза является репарация тканей и органов и её виды:
1. АУТОТРАНСПЛАНТАЦИИ (пересадка на другую часть тела того же организма)
2. АЛЛОТРАНСПЛАНТАЦИИ (от одной особи к другой одного вида).
3. КСЕНОТРАНСПЛАНТАЦИЯ (донор и реципиент относятся к разным видам)
При трансплантации большое значение имеет явление ИММУНОЛОГИЧЕСКОЙ ТОЛЕРАНТНОСТИ (терпимости) к чужеродным клеткам вследствие реакции отторжения.
59. Классификация изменчивости, роль наслед-й и модифик-й изменчивости.
ИЗМЕНЧИВОСТЬ, способность живых организмов приобретать новые признаки и качества. Выделяют два основных типа изменчивости:
1.Наследственная, или генотипическая, изменчивость обусловлена изменениями в генетическом материале (генотипе), которые передаются из поколения в поколение.
Она бывает:
А) Мутационная – может быть вызвана мутациями – изменениями в структуре генов и хромосом или изменениями числа хромосом в хромосомном наборе. При мутационной изменчивости возникают новые варианты (аллели) генов, причём мутации происходят сравнительно редко и внезапно.
Б) Комбинативная - в основе лежит перекомбинация хромосом и их участков при половом размножении (в процессе мейоза и оплодотворения). В результате набор генов, а следовательно, и признаков у потомков всегда отличается от набора генов и признаков у родителей. Комбинативная изменчивость создаёт новые сочетания генов и обеспечивает как всё разнообразие организмов, так и неповторимую генетическую индивидуальность каждого из них.
2. Модификационная – способность организмов изменяться под действием различных факторов окружающей среды (температуры, влажности и т. п.). Этот тип изменчивости не связан с изменениями в генотипе и не наследуется. Однако пределы модификационной изменчивости любого признака – т. н. норма реакции – задаются генотипом. Широта нормы реакции, зависит от значения признака: чем важнее признак, тем уже норма реакции. Модификационная изменчивость носит групповой характер – изменения (модификации) возникают у всех особей популяции, которая подвергается влиянию определённого внешнего воздействия. Другая её особенность – обратимость: обычно модификации сразу или постепенно исчезают при устранении вызвавшего их фактора.
|