МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Физиологическое значение меди в жизнедеятельности растений

    Показано, что ростовые вещества способны к образованию внутрикомплексных соединений с металлами. Изучены внутрикомплексные соеди­нения 2,4-диметил-, 2-метил-4-хлор- и 2,4-дихлорфеноксиуксусных кислот с медью (Armarego et al., 1959).

    Известно, что этилен ингибирует деление клеток, синтез ДНК, рост в меристемах корней, побегов, а также в аксилярных почках и задерживает дифференциацию. Для биосинтеза этилена из метионина необходимы медьсодержащий фермент и кислород (Burg, 1973).

    Большой интерес представляет вопрос о роли меди в фенольном обмене и о ее влиянии на содержание различных полифенолов, среди которых име­ются как ингибиторы, так и стимуляторы роста. Известно, что медь комплексируется с различными фенольными соединениями. Недавно С.Г.Юферова и Т.М.Удельнова (1971) обнаружили в воднорастворимых экстрактах листьев соединение меди с фенолом, содержащее 18.1% меди.

    Известны комплексы меди с антоцианами. Медь играет важную роль в биосинтезе антоциана (Edmonson, Thimann, 1950). Тиман и Раднер (Thimann, Radner, 1955) обнаружили интересный факт. Им удалось ингибировать синтез антоциана с помощью 2-тиоурацила и снять это ингибирование не только тимином, урацилом, аденином, гипоксантином, но и медью. Не исключена возможность связи этого явления в какой-то сте­пени с выявленным (Окунцов и др., 1966) положительным влиянием меди на биосинтез аденина. В опытах Н.И.Гринкевич, В.В.Ковальского и И.Ф.Трибовской (1970) медь повышала в растениях гречихи содержание различных флавоноидных соединений, особенно антоцианов. Авторами была также обнаружена отчетливая корреляция между накоплением меди и суммой флавоноидов.

    В обзоре Фрейга (Fraig, 1972-1973) о путях биосинтеза и метаболизма основных моно- и полифенолов и о ферментативных системах, участвую­щих в их метилировании, гликозидировании и окислительном декарбоксилировании подчеркивается роль меди и железа в составе ферментов, влияющих на содержание фенолов путем воздействия на уровень синтеза фенолов.

    Косвенным доказательством значения меди в фенольном обмене явля­ется ее положительное влияние на повышение устойчивости к различным грибным заболеваниям (Дорожкин, Кустова, 1955; Соколовская, 1955; Маленев, 1956), зависящей от содержания фенольных соединений в тканях. Установленное рядом авторов положительное действие меди на устойчи­вость к полеганию, по-видимому, также в большой степени связано с ее влиянием на содержание фенольных ингибиторов, снижение которых, как показала Л.Д.Прусакова (1966), приводит к чрезмерному вытягиванию стебля и к полеганию. Известно, что в условиях медной недостаточности, например на торфяно-болотных почвах, наблюдаются нарушения развития, а именно формирования репродуктивных органов. Представляет большой интерес выяснение влияния меди на этот процесс.

    И.Н.Полухина и М.К.Масляная (1962) изучили влияние меди на раз­витие завязей и зерновок у культурных злаков. Они показали, что недо­статок меди нарушает развитие зерновок, в результате чего появляется щуплое зерно. Анатомическое изучение зерновок с момента их образова­ния показало отрицательное действие дефицита меди на завязи, имеющие зрелые зародышевые мешки. Недостаток меди вызывает дегенерацию уже зрелого зародышевого мешка, что и приводит к щуплости зерна. Б.Ливдане, Г.Озолиня и Л.Лапиня (1970) при острой медной недостаточности в период цветения растений наблюдали морфологические изменения муж­ских генеративных органов и массовое отмирание женских генеративных органов. Относительное содержание меди в отмерших завязях не превы­шало 2 мкг/г, тогда как в жизнеспособных достигало 20 мкг/г и более. Со­держание, меди в созревших зерновках у растений высокого медного фона варьирует около 10, а у дефицитных — около 1 мкг/г.

    Остановимся на данных об ингибировании фотопериодической чувствительности с помощью меди. В опытах Хильмана (Hillman, 1962) каждое из короткодневных растений Lemna perpusilla 6746 и длиннодневных L. gibba G3, будучи выращенными на среде Хогланда, имели нормальный фотопериод. При добавлении меди (2 мг/л) L. perpusilla из короткодневной становится нейтральной, в то время как длиннодневная L. gibba пе­рестает цвести. Подобный, но менее сильный эффект обнаружен под влия­нием ртути. Кобальт, хром, марганец, никель, свинец и цинк не ока­зывали подобного действия, но некоторые из них слегка видоизменили эффект меди. Действие меди интерпретируется как ингибирование фото­периодической чувствительности при участии фитохрома.

    Хромопротеид фитохром представляет собой фотоактивную каталатическую систему, обратимо изменяющуюся под воздействием красных и дальних красных лучей и широко распространенную в тканях высших растений. Обратимые изменения этого фотофермента, судя по многочислен­ным данным, являются ключевыми для регуляции светом многих сторон жизнедеятельности растений, в том числе осуществления фотопериодиче­ской реакции, ростовых процессов, биосинтеза ингибиторов роста.

    Имеются данные о влиянии фитохрома на биосинтез антоциана. Не­которые исследователи считают, что биосинтез антоциана может быть связан с центральным звеном регуляции красным и дальним красным светом обменных реакций в растительном организме. Высказываются предполо­жения (Vince, Grill, 1966), что в синтезе антоциана на красном и дальнем красном свете участвуют две формы фитохрома — восстановленная и окисленная. Вместе с тем, как уже указывалось, и медь играет важную роль в биосинтезе антоциана.

    Можно было бы думать, что медь оказывает влияние на чувствитель­ность к фотопериодической реакции через антоциан. Однако, как выяви­лось, прямой зависимости между содержанием антоциана и цветением не наблюдается.

    Интересно было бы выяснить роль меди в структурной организации клетки, в частности влияние меди на строение внутриклеточных мембран, о синтезе которых можно косвенно судить по содержанию фосфолипидов. На животном материале Галахер и его сотрудники (Gallacher et al., 1956) показали сильное угнетение синтеза фосфолипидов при недостатке меди. Интересно было бы в связи с этим выяснить влияние меди на синтез фос­фолипидов у растений. Следует обратить внимание на то, что ацетилкофермент А играет, также как и медь, существенную роль в биосинтезе ан­тоциана и является общим звеном, связывающим биосинтез антоцианов с обменом липидов.

    Вместе с тем, согласно гипотезе Бортвика, Хендрикса и Паркера (Borthwick, Hendricks, Parker, 1961), активная форма фитохрома, образующаяся из неактивной в результате поглощения красного света, представляет собой дегидрогеназу ацетилкофермента А.

    В наших исследованиях (Школьник, 1939б, 1955; Школьник, Мака­рова, 1958) и в других работах (Окунцов, Левцова, 1952; Свидерская, 1959) было выявлено положительное влияние меди на засухо-, морозо- и жароустойчивость растений и на процессы, определяющие эту устойчи­вость. На этом вопросе мы особо остановимся в заключительной части данной книги. Л.А.Лебедева (1966) выявила значительное повышение морозоустойчивости и продуктивности озимой пшеницы при внесении меди в почву перед посевом и детально изучила влияние меди на фосфорный обмен в первую и вторую фазы закаливания растений. Медь способствует накоплению общего фосфора и всех форм его органических соединений, особенно эфиросахаров, ДНК, РНК и АТФ в растениях.

    С вопросом о физиологической роли меди в растениях тесно связана проблема взаимоотношений меди с другими элементами минерального пи­тания. Нами (Школьник, Макарова, 1950) был обнаружен факт антаго­низма железа и меди. В опытах со льном с помощью железа нам удалось устранить токсическое действие меди. Эти данные были подтверждены рядом авторов. Ими было показано снижение поступления железа в рас­тения при высоких дозах меди (Lingle et al., 1963). Таким образом, как не­достаток, так и избыток меди нарушают питание растений железом.

    Установлено, что характер взаимоотношений меди и железа зависит от соотношения их молярных концентраций и от рН среды (Гамаюнова, Островская, 1964). Явление антагонизма железа и меди возникает, как установили Л.К.Островская, Г.А.Овчаренко, Л.И.Расторгуева, С.Г.Петренко (1966), в щелочной среде и может не возникать в слабокис­лой среде. Так, при выращивании люпина на дерновоподзолистой почве, имеющей сильно кислую реакцию среды (рН 4.7), явление антагонизма меди и железа не только не проявлялось, а, напротив, наблюдался, синер­гизм их действия (Жизневская, 1968). Г.А.Овчаренко (1965) показала важность соотношения количеств железа и меди в тканях для активности некоторых окислительных ферментов и возможную частичную взаимозаменяемость медьсодержащих и железосодержащих ферментов и связанных с ними систем в процессах обмена при недостатке того или другого элемента. Предполагается, что медь играет важную роль в окислении железа в растениях. Эркама (Erkama, 1950) пришел к заключению, что медь, окисляя железо в тканях, переходит в нерастворимое состояние. Интересные данные о взаимосвязи между медью и железом в метабо­лизме клубеньков получила Г.Я.Жизневская (1972). Основываясь на литературных данных о наличии связи между медью и гематиновыми коферментами в активных центрах целого ряда окислительных ферментов — цитохромоксидазы, триптофанпирролазы, гемопротеида Р-450 и на собственных исследованиях, показавших действие меди на активность терми­нального медь- и железосодержащего участка дыхательной цепи клубень­ков, автор предположила наличие взаимосвязи между медью и железом в процессах метаболизма в клубеньках. При этом одной из сторон актива­ции азотного обмена у бобовых растений под действием меди является влияние ее на обмен железа и на функционирование железопротеидов и железо-медьпротеидов. Специально проведенные исследования доказали увеличение поступления железа при увеличенном поступлении меди в рас­тение. Внесение меди в почву способствует повышению концентрации как геминового, так и негеминового железа в клубеньках кормовых бобов, на­ходящихся в фазе формирования зеленых бобов. Медь препятствует также снижению концентрации железа в клубеньках при повышенной дозе извести.

    Г.Я.Жизневской (1972) же была обнаружена взаимосвязь меди и кальция в питании бобовых растений. В ее опытах внесение меди увеличивало содержание кальция в растениях люпина при выращивании на кислой почве с абсолютным недостатком подвижной меди. При известковании внесение меди несколько снижало содержание кальция в растениях лю­пина, предотвращая избыточное накопление кальция. Медь, таким об­разом, отмечает Жизневская, выступает в роли своеобразного регулятора уровня кальция в бобовых растениях. Имеются также данные о взаимо­действии меди и молибдена. На этих фактах мы останавливаемся в главе, посвященной молибдену.

    Представляет интерес вопрос о взаимоотношении меди и фосфора. С помощью высоких доз фосфора можно вызвать как цинковую недостаточ­ность, так и недостаточность меди. Такие факты были получены в опытах с лимоном (Bingham, Martin, 1955). Имея в виду эти данные, Шютте (Schutte, 1964) считает, что можно говорить об антагонизме между фос­фором, цинком, фосфором и медью.

    Наиболее чувствительными к недостатку меди являются:

    ü      пшеница,

    ü      ячмень,

    ü      белые сорта овса.

    При остром недостатке меди эти культуры не колосятся, а иногда и погибают.

    Культуры со средней чувствительность к недостатку или дефициту меди:

    ü      кукуруза,

    ü      корнеплодные культуры (морковь, репа, сахарная и красная свекла),

    ü      технические культуры (конопля, хлопок),

    ü      масленые культуры (подсолнечник, рапс и другие),

    ü      бобовые культуры (фасоль, горох, бобы),

    ü      бобовые травы для производства семян.

    Менее чувствительными к недостатку меди являются:

    ü      житные травы,

    ü      рожь,

    ü      гречиха,

    ü      белокочанная капуста.

    Эти культуры способны легче усваивать большое количество меди, однако на карбонатных, торфяных, песчаных и кислых почвах положительно реагируют на медные удобрения.


    Лашкевич приводит сведения о большом положительном влиянии медных удобрений на качество урожая:

    ü      увеличивает количество белка в зерне злаковых растений;

    ü      повышает сахаристость сахарной свеклы;

    ü      увеличивает выход каучука у кок-сагыза;

    ü      повышает содержание витамина С и каротина в овощ. растениях и травах;

    ü      повышает содержание лимонной кислоты и никотина в табаке.

    Прибавка урожая хлопка-сырца под влиянием меди (на 24%) была получена С.С.Абаевой при сочетании 12-часовой предпосевной обработки семян в 0,005% растворе медного купороса с внекорневой подкормкой бора в фазе цветения.

    Симптомы страдания растений от недостатка меди являются: интенсивное кущение растений, подсыхание кончиков листьев, задержка в формировании репродуктивных органов и пустозерность зерна.

    При недостатке меди, такие культуры как ячмень, овес, пшеница поражаются хлорозой, известной под названием – белая чума. Внешние признаки этой болезни ясно выражены: верхушки листьев белеют и быстро засыхают. При большом дефиците меди растения кустятся, образуют стебель но не колосятся, если и образуется колос, то он белеет и в нем не образуется зерно.

    Недостаток меди неблагоприятно отражается на развитие завязи и зерна житных трав, наступают морфологические изменения в мужских генеративных органах и отмирают женские генеративные органы, может дегенерироваться и зрелая зародышевая сумочка, которая приводит к пустым семенам.



    Листья свеклы со следами

    медного дефицита

     

    Подсолнечник при медном дефиците в фазу бутонизации, справа контроль



    Недостаток меди в томатах сильно задерживает рост стебля и уменьшает развитие корневой системы, листья окрашиваются в темный сине-зеленный цвет и вырастают мелкими, в сравнении с нормальными растениями, по листьям развивается хлороза, края листьев закручиваются к верхней поверхности листа, соцветия не развиваются, стебель и листья становятся хрупкими.

    Листья салата, страдающего от недостатка меди, имеют уродливую форму, теряют яркость, становятся хлоротичными. Хлороза в первую очередь появляется на стебле и внешнем крае листа.

    При недостатке меди в почве яблоня, груша, слива, персик и цитрусовые культуры заболевают экземой (побеги высыхают). Это заболевание сильно проявляется во время интенсивного роста летних побегов, особенно в жаркое лето и во время засухи, а так же при сильной солнечной радиации.



    Поражения житных трав

    при медном дефиците

    Пораженный подсолнечник в фазу цветения, слева контроль



    На яблоне эта болезнь известна как увядание и гибель верхушек побегов. Первые симптомы появляются в конце Мая – начало июля: рост верхних листьев на летних побегах уменьшается, края листьев загибаются к верхней площади листа и лист приобретает форму ладьи. При недостатке меди на листьях появляется хлороза (на светло-зеленном фоне листа выступает сетка из темно-зеленных прожилок), а при сильном дефиците меди развивается и некроза, которая сначала охватывает края листьев, а затем и всю площадь листа. Листья отмирают и опадают, верхняя часть побегов оголяется. При продолжительном медном дефиците верхушки побегов засыхают, становятся желто-кофейного цвета и погибают. Кроны деревьев приобретают кустар- никовую форму, плоды вырастают мелкие, деформированные и отвер девшими.



    Пшеница со следами поражения при недостатке меди, справа контроль

    Хлороза (белая чума) ячменя



    Недостаток и дефицит меди вызывает следующие

    важные заболевания растений:

    Ø        медная хлороза;

    Ø        медная некроза;

    Ø        белая чума зерновых культур;

    Ø        экзема (высыхание верхних побегов) плодовых деревьев.



    Медь содержится в тканях всех высших и низших растений. Ее количество варьирует в широких границах в зависимости от видовых и сортовых особенностей растений, фазы развития, концентрации и формы подвижных соединений в почве. Бобовые культуры накапливают больше меди, чем зерновые культуры (пшеница, ячмень, овес) и некоторые житные травы; молодые растения содержат больше меди на единицу сухого вещества, чем старые; листья содержат больше меди чем другие органы растений. Поступающие в растения медные ионы реагируют с аминокислотами, белками и другими полимерами, и образуют более стабильные комплексные соединения по сравнению с другими металлическими ионами. Физико-химическая функция меди связана с наиболее скрытыми и сложными процессами в растительной клетке: дыхания, фотосинтеза, синтез белков, углеводов и витаминов, азотный и фосфорный обмен и т.д. Медь влияет на один из факторов, необходимых для нормального осуществления ассимиляции минерального азота и биосинтеза полимеров и белков, особенно при аммониевой подкормки зерновых культур. Медь влияет на фиксацию молекулярного азота и на метаболизм растений, активизирует процессы связывания атмосферного азота. Повышает устойчивость растений к высоким и низким температурам и к грибковым и бактериальным заболеваниям, благоприятно воздействует на устойчивость растений к полеганию.

    Содержание меди в растениях, как и всякого другого элемента, зависит прежде всего от вида растения, а также от среды его произрастания. Наиболее богаты по общему содержанию меди красноземы и желтоземы, а наименьшее его количество содержится в торфяном грунте. Медь входит в состав ряда важных окислительных ферментов и выполняет специфическую роль в ускорении окислительно-восстановительных процессов, происходящих в живых организмах. Большое влияние она оказывает на образование в растениях хлорофилла. Под влиянием этого элемента усиливается образование в растениях белков, углеводов, жиров, витамина С, улучшается формирование органов плодоношения. При недостаточном содержании меди в среде растения развиваются плохо, снижается содержание в них хлорофилла, органы растений бледнеют и отмирают.

    Медь играет специфическую роль в жизни растений: регулирует фотосинтез и концентрацию образующихся в растении ингибиторов роста, водный обмен и перераспределение углеводов, входит в состав ферментов, повышает устойчивость к полеганию. Недостаток меди вызывает у растений задержку роста и цветения, хлороз листьев, потерю упругости клеток (тургора) и увядание растений. Известкование почв увеличивает поглощение меди почвенными частицами и снижает ее доступность для растений. Избыток меди также чрезвычайно вреден для растения. Проявляется он в том, что растение тормозится в развитии, на листьях появляются бурые пятна и они отмирают. Начинается процесс с нижних более старых листьев.

    Применение медных удобрений не только сказывается на повышении урожайности, но и на качестве сельскохозяйственных продуктов. Так, количество белка в зерне нарастает, сахаристость сахарной свеклы увеличивается, так же как процент выхода каучука у кок-сагыза, содержание витамина С и каротина в плодах и овощах, улучшаются технологические качества волокна конопли, повышает содержание лимонной кислоты и никотина в табаке. Под влиянием медных удобрений повышается устойчивость озимой пшеницы к полеганию.

    Приведенные в настоящей курсовой работе данные показывают, что основной стороной физиологической роли меди в растениях является ее участие в качестве компонента ряда ферментов, связанных с окислительно-вос­становительными процессами. Наряду с марганцем, медь, входя в состав пластоцианина, играет важную роль в фотосинтезе. Значительна роль этого элемента также в фенольном, азотистом, нуклеиновом и ауксиновом обменах. Медь связана также с фиксацией молекулярного азота.



    Ø      Школьник Марк Яковлевич, Микроэлементы в жизни растений, Л., Изд-во "Наука", 1974, стр. 140-156


    Ø      Школьник Марк Яковлевич, Значение микроэлементов в жизни растений и в земледелии, М., Изд-во Академии наук СССР, 1950


    Ø      Школьник Марк Яковлевич, Значение микроэлементов в жизни растений и земледелии Советского Союза, М., Изд-во Академии наук СССР, 1963


    Ø      Школьник Марк Яковлевич, Микроэлементы в сельском хозяйстве, М.-Л., Изд-во Академии наук СССР, 1957


    Страницы: 1, 2, 3


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.