МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Билеты по биологии 11 класс

    p> Билет № 14
    1. 1. Образование зиготы, ее первые деления - начало индивидуального развития организма при половом размножении. Эмбриональный и постэмбриональный периоды развития организмов.
    2. Эмбриональное развитие — период жизни организма с момента образования зиготы до рождения или выхода зародыша из яйца.
    3. Стадии эмбрионального развития (на примере ланцетника): 1) дробление — многократное деление зиготы путем митоза. Образование множества мелких клеток (при этом они не растут), а затем шара с полостью внутри — бластулы, равной по размерам зиготе; 2) образование гаструлы — двухслойного зародыша с наружным слоем клеток (эктодермой) и внутренним, выстилающим полость
    (энтодермой). Кишечнополостные, губки — примеры животных, которые в процессе эволюции остановились на двухслойной стадии; 3) образование трехслойного зародыша, появление третьего, среднего слоя клеток — мезодермы, завершение образования трех зародышевых листков; 4) закладка из зародышевых листков различных органов, специализация клеток.
    4. Органы, формирующиеся из зародышевых листков.

    |Зароды|Название|
    |шевые |частей и|
    |листки| |
    | |органов |
    | |зародыша|
    | | |
    |1. |Нервная |
    |Наружн|пластинк|
    |ый, |а, |
    |эктоде|нервная |
    |рма |трубка, |
    | |нару-жны|
    | |й слой |
    | |кожного |
    | |покрова,|
    | |органы |
    | |зрения и|
    | | |
    | |слуха |
    |2.Внут|Кишечник|
    |ренний|, |
    |, |легкие, |
    |энтоде| |
    |рма |печень, |
    | |поджелуд|
    | |очная |
    | |железа |
    |3. |Хорда, |
    |Средни|хрящевой|
    |й, | |
    |мезоде|и |
    |рма |костный |
    | |скелет, |
    | | |
    | |мышцы, |
    | |почки, |
    | |кровенос|
    | |ные |
    | |сосуды |


    5. Взаимодействие частей зародыша в процессе эмбрионального развития — основа его целостности. Сходство начальных стадий развития зародышей позвоночных животных — доказательство их родства.
    6. Высокая чувствительность зародыша к воздействию факторов среды. Вредное влияние алкоголя, наркотиков, курения на развитие зародыша, на подростка и взрослого человека.
    2. 1. Г. Мендель — основоположник генетики.
    Открытие им законов наследственности на основе применения методов скрещивания и анализа потомства.
    2. Изучение Г. Менделем генотипов и фенотипов исследуемых организмов.
    Фенотип — совокупность внешних и внутренних признаков, особенностей процессов жизнедеятельности. Генотип — совокупность генов в организме.
    Доминантный признак — преобладающий, господствующий; рецессивный — исчезающий, подавляемый признак. Гомозиготный организм содержит аллельные только доминантные (АА) или только рецессивные (аа) гены, которые контролируют формирование определенного признака. Гетерозиготный организм содержит в клетках доминантный и рецессивный гены (Аа). Они контролируют формирование альтернативных признаков.
    3. Правило единообразия (доминирования) признаков у гибридов первого поколения — при скрещивании двух гомозиготных организмов, различающихся по одной паре признаков (например, желтая и зеленая окраска семян гороха), все потомство гибридов первого поколения будет единообразным, похожим на одного из родителей (желтые семена).
    4. Запись схемы скрещивания, отражающая правило единообразия гибридов первого поколения.
    Особи с генотипом Аа имеют желтый цвет семян, так как ген А доминирует над геном а.
    3. Для обнаружения ферментов надо на кусочки сырого и вареного картофеля нанести по капле перок-сида водорода (Н2О2), наблюдать, где произойдет его «вскипание». Под влиянием фермента пероксидазы в клетках сырого картофеля происходит реакция разложения пероксида водорода с выделением кислорода, вызывающего «вскипание». При варке картофеля фермент разрушается, поэтому на срезе вареного картофеля «вскипания» не происходит.

    Билет № 15

    1. Индивидуальное развитие организма (онтогенез) — период жизни, который при половом размножении начинается с образования зиготы, характеризуется необратимыми изменениями (увеличением массы, размеров, появлением новых тканей и органов) и завершается смертью.
    2. Зародышевый (эмбриональный) и послезаро-дышевый (постэмбриональный) периоды индивидуального развития организма.
    3. Послезародышевое развитие (приходит на смену зародышевому) — период от рождения или выхода зародыша из яйца до смерти. Различные пути послезародышевого развития животных — прямое и непрямое:
    1) прямое развитие — рождение потомства, внешне похожего на взрослый организм. Примеры: развитие рыб, пресмыкающихся, птиц, млекопитающих, некоторых видов насекомых. Так, малек рыбы похож на взрослую рыбу, утенок на утку, котенок на кошку;
    2) непрямое развитие — рождение или выход из яйца потомства, отличающегося от взрослого организма но морфологическим признакам, образу жизни (типу питания, характеру передвижения). Пример: из яиц майского жука появляются червеобразные личинки, живут в почве и питаются корнями в отличие от взрослого жука (живет на дереве, питается листьями).
    Стадии непрямого развития насекомых: яйцо, личинка, куколка, взрослая особь. Особенности жизни животных на стадии яйца и куколки — они неподвижны. Активный образ жизни личинки и взрослого организма, разные условия обитания, использование разной пищи.
    4. Значение непрямого развития — ослабление конкуренции между родителями и потомством, так как они поедают разную пищу, у них разные места обитания.
    Непрямое развитие — важное приспособление, возникшее в процессе эволюции.
    Оно способ ствует ослаблению борьбы за существование между родителями и потомством, выживанию животных на ранних стадиях послезародышевого развития.
    2. 1. Изучение Г. Менделем наследственности с помощью гибридологического метода — скрещивания родительских форм, различающихся по определенным признакам, и изучение характера их наследования в ряду поколений.
    2. Скрещивание гомозиготной доминантной и рецессивной особей, появление в первом гибридном поколении всех особей с доминантным признаком. Причина: все гибридные особи имеют гетерозиготный генотип, например, Аа, в котором доминантный ген подавляет рецессивный.
    3. Проявление закона расщепления при скрещивании между собой гибридов первого поколения Аа хАа. Дальнейшее размножение гибридов — причина расщепления, появления в потомстве F2 особей с рецессивными признаками, составляющих примерно четвертую часть от всего потомства.
    4. Причины отсутствия расщепления во втором и последующих поколениях гомозиготных рецессивных особей — образование гамет одного типа, наличие в них лишь рецессивного гена, например, гамет с генами а. Слияние при оплодотворении мужской и женской гамет с генами а и а — причина образования гомозиготного потомства с рецессивным генотипом — аа.
    5. Гомозиготы — организмы, содержащие в клетках два одинаковых гена по данному признаку (АА либо аа), отсутствие у них расщепления признаков в последующих поколениях. Гетерозиготы — организмы, содержащие в клетках разные гены по какому-либо признаку (Аа), дающие расщепление признаков в последующих поколениях.
    3. Надо исходить из того, что ДНК служит матрицей для иРНК, она обеспечивает последовательность нуклеотидов в иРНК. Двойная спираль ДНК с помощью ферментов разъединяется, к одной ее цепи поступают нуклеотиды. На основе принципа дополнительности нуклеотиды располагаются и фиксируются на матрице ДНК в строго определенной последовательности. Так, к нуклеотиду Ц всегда присоединяется нуклеотид Г или наоборот: к Г — Ц, а к нуклеотиду А —
    У (в РНК вместо тимина нуклеотид урацил). Затем нуклеотиды соединяются между собой и молекула иРНК сходит с матрицы.

    Билет № 16

    1. 1. Ген — отрезок молекулы ДНК, носитель наследственной информации о первичной структуре одного белка. Локализация в одной молекуле ДНК нескольких сотен генов. Каждая молекула ДНК — носитель наследственной информации о первичной структуре сотен молекул белка.
    2. Хромосома — важная составная часть ядра, состоящая из одной молекулы ДНК в соединении с молекулами белка. Следовательно, хромосомы — носители наследственной информации. Число, форма и размеры хромосом — главный признак, генетический критерий вида. Изменение числа, формы или размера хромосом — причина мутаций, которые часто вредны для организма.
    3. Высокая активность деспирализованных хромосом в период интерфазы.
    Самоудвоение молекул ДНК, их участие в синтезе иРНК, белка.
    4. Ген (отрезок молекулы ДНК) — матрица для синтеза иРНК, а иРНК — матрица для синтеза белка. Матричный характер реакций самоудвоения молекул ДНК, синтеза иРНК, белка — основа передачи наследственной информации от гена к признаку, который определяется молекулами белка. Многообразие белков, их специфичность, многофункциональность — основа формирования различных признаков у организма, реализации заложенной в генах наследственной информации.
    5. Самоудвоение хромосом, сиирализация, четкий механизм их распределения между дочерними клетками в процессе митоза — путь передачи наследственной информации от материнской к дочерним клеткам.
    6. Путь передачи наследственной информации от родителей потомству: образование половых клеток с гаплоидным набором хромосом, оплодотворение, образование зиготы — первой клетки Дочернего организма с диплоидным набором хромосом.
    2. 1. Многообразие видов растений, животных и других организмов, их закономерное расселение в природе, возникновение в процессе эволюции относительно постоянных природных комплексов.
    2. Биогеоценоз (экосистема) — совокупность взаимосвязанных видов
    (популяций разных видов), длительное время обитающих на определенной территории с относительно однородными условиями. Лес, луг, водоем, степь — примеры экосистем.
    3. Автотрофный и гетеротрофный способы питания организмов, получения ими энергии. Характер питания — основа связей между особями разных популяций в биогеоценозе. Использование автотрофами (в основном растениями) неорганических веществ и солнечной энергии, создание из них органических веществ. Использование гете-ротрофами (животными, грибами, большинством бактерий) готовых органических веществ, синтезированных автотрофами, и заключенной в них энергии.
    4. Организмы — производители органического вещества, потребители и разрушители — основные звенья биогеоценоза. 1) Организмы-производители — автотрофы, в основном растения, создающие органические вещества из неорганических с использованием энергии света; 2) организмы-потребители — гетеротрофы, питаются готовыми органическими веществами и используют заключенную в них энергию (животные, грибы, большинство бактерий); 3) организмы-разрушители — гетеротрофы, питаются остатками растений и животных, разрушают органические вещества до неорганических (бактерии, грибы).
    5. Взаимосвязь организмов — производителей, потребителей, разрушителей в биогеоценозе. Пищевые связи — основа круговорота веществ и превращения энергии в биогеоценозе. Цепи питания — пути передачи вещества и энергии в биогеоценозе. Пример: растения —» растительноядное животное (заяц) —» хищник (волк). Звенья в цепи питания (трофические уровни): первое — растения, второе — растительноядные животные, третьи — хищники.
    6. Растения — начальное звено цепей питания благодаря их способности создавать органические вещества из неорганических с использованием солнечной энергии. Разветвленность цепей питания: особи одного трофического уровня (производители) служат пищей для организмов нескольких видов другого трофического уровня (потребителей).
    7. Саморегуляция в биогеоценозах — поддержание численности особей каждого вида на определенном, относительно постоянном уровне. Саморегуляция — причина устойчивости биогеоценоза. Его зависимость от разнообразия обитающих видов, многообразия цепей питания, полноты круговорота веществ и превращения энергии.
    3. Надо учитывать, что наследование признаков, контролируемых генами, расположенными в Х-хро-мосоме, будет происходить иначе, чем контролируемых генами, находящимися в аутосомах. Например, наследование гена гемофилии связано с ЛГ-хромосо-мой, в которой он расположен.
    Доминантный ген Н обеспечивает свертываемость крови, а рецессивный ген h — несвертываемость. Если женщина имеет в клетках два гена hh, то у нее проявляется болезнь, если Hh — болезнь не проявляется, но она является носителем гена гемофилии. У мужчин гемофилия проявляется при наличии одного гена h, так как у него всего одна Х-хромосома.

    Билет № 17

    1. 1. Г. Мендель — основоположник генетики, которая изучает наследственность и изменчивость организмов, их материальные основы.
    2. Открытие Г. Менделем правила единообразия, законов расщепления и независимого наследования. Проявление правила единообразия и закона расщепления во всех видах скрещивания, а закона независимого наследования — при дигиб-ридном и полигибридном скрещивании.
    3. Закон независимого наследования — каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример: при скрещивании растений гороха с желтыми и гладкими семенами (доминантные признаки) с растениями с зелеными и морщинистыми семенами (рецессивные признаки) во втором поколении происходит расщепление в соотношении 3:1 (три части желтых и одна часть зеленых семян) и 3:1 (три части гладких и одна часть морщинистых семян).
    Расщепление по одному признаку идет независимо от расщепления по другому.
    4. Причины независимого наследования признаков — расположение одной пары генов (Аа) в одной паре гомологичных хромосом, а другой пары (ВЪ) — в другой паре гомологичных хромосом. Поведение одной пары негомологичных хромосом в митозе, мейозе и при оплодотворении не зависит от другой пары.
    Пример: гены, определяющие цвет семян гороха, наследуются независимо от генов, определяющих форму семян.
    2. 1. Дубрава — устойчивый биогеоценоз, существует сотни лет, заселен многими видами растений (около сотни) и животных (несколько тысяч), грибов, лишайников и др., длительное время занимает определенную территорию с относительно однородными абиотическими факторами (влажностью, температурой и др.).
    2. Причины устойчивости дубравы — большое разнообразие видов, тесные связи между ними (пищевые, генетические), разнообразные приспособления к совместному обитанию, сложившийся механизм саморегуляции — поддержания численности особей на относительно постоянном уровне.
    3. Наличие в дубраве трех звеньев: организмов — производителей, потребителей и разрушителей органического вещества. Различный характер питания, способов получения энергии организмами этих звеньев — основа пищевых связей, круговорота веществ и потока энергии. Живое население дуб равы — биотические факторы, факторы неживой природы — абиотические.
    4. Организмы — производители дубравы. Многолетние древесные широколиственные и мелколиственные растения — основные производители органического вещества. Ярусное расположение растений, наличие 4—5 ярусов — приспособленность к эффективному использованию света, влаги, территории.
    5. Высокая продуктивность организмов-производителей (растений) — причина заселения дубравы множеством видов животных от простейших до млекопитающих.
    Наибольшее разнообразие видов членистоногих в дубраве: растительноядных, хищных, паразитов.
    6. Особенности цепей питания дубравы — их разнообразие, большое число звеньев, разветвлен-ность (сети питания — один вид служит пищей для нескольких видов). Эффективное использование органического вещества и энергии, полный круговорот веществ.
    7. Жуки-мертвоеды, кожееды, личинки падаль-ных мух, грибы, гнилостные бактерии — организмы-разрушители, расщепление ими отмерших частей растений, остатков животных и продуктов их жизнедеятельности до минеральных веществ.
    Использование растениями в процессе почвенного питания минеральных веществ.
    8. Саморегуляция в дубраве — совместное существование различных видов с разными способами питания. Численность особей каждого вида ограничивается определенным уровнем, а полного уничтожения их не происходит. Пример: зайцы, лоси, насекомые не уничтожают полностью растения, которыми они питаются; лисы, волки ограничивают численность популяций зайцев, полевок.
    9. Ярусное расположение растений, теневыносливость трав, ранневесеннее цветение луковичных растений — примеры приспособленности организмов к биотическим и абиотическим факторам среды.
    3. Надо приготовить микроскоп к работе: осветить поле зрения, с помощью винтов найти четкое изображение, рассмотреть клетку, в которой ядро обособлено от цитоплазмы оболочкой, хромосомы имеют вид тонких нитей и тесно переплетены.

    Билет № 18

    1. 1. Десятки и сотни тысяч генов в клетке — основа формирования большого разнообразия признаков в организме. Несоответствие числа хромосом
    (единицы, десятки) числу генов (тысячи, сотни тысяч) — доказательство расположения в каждой хромосоме множества генов.
    2. Группа сцепления — хромосома, в которой расположено большое число генов. Соответствие групп сцепления числу хромосом.
    3. Неприменимость закона независимого наследования к признакам, формирование которых определяется генами, расположенными в одной группе сцепления — хромосоме. Закон сцепленного наследования, открытый Т.
    Морганом, — сцепление генов, локализованных в одной хромосоме. Совместное наследование генов одной группы сцепления (при мейозе хромосомы со всей группой генов попадают в одну гамету, а не расходятся в разные гаметы).
    4. Кроссинговер — перекрест хромосом и обмен участками генов между гомологичными хромосомами — причина нарушения сцепленного наследования, появления в потомстве особей с перекомбинированными признаками. Пример: при скрещивании дрозофил с серым телом и нормальными крыльями и дрозофил с темным телом и зачаточными крыльями появляется потомство с родительскими фенотипами и небольшое число особей с перекомбинацией признаков: серое тело
    — зачаточные крылья и темное тело — нормальные крылья.
    5. Зависимость частоты перекреста, перекомбинации генов от расстояния между ними: чем больше расстояние между генами, тем больше вероятность обмена участками генов. Использование этой зависимости для составления генетических карт. Отражение в генетических картах места расположения генов в хромосоме, расстояния между ними. Значение перекреста хромосом — возникновение новых комбинаций генов, повышение наследственной изменчивости, играющей большую роль в эволюции и селекции.
    2. 1. Хвойный лес — биогеоценоз, который занимает длительное время определенную территорию с относительно однородными условиями, в нем обитает совокупность популяций разных видов, происходит круговорот веществ.
    2. Наличие в биогеоценозе хвойного леса трех звеньев: производителей органического вещества, его потребителей и разрушителей.
    1) Организмы-производители — в основном виды хвойных, а также некоторые виды мелко- и широколиственных древесных растений, лишайники и мхи, небольшое число видов кустарников и трав. Ярусное расположение растений и животных — приспособление к более полному использованию света, питательных веществ, территории. Причина небольшого числа ярусов в лесу — недостаток света;
    2) организмы-потребители — разные виды членистоногих, земноводных, пресмыкающихся, птиц и млекопитающих, среди них одни — растительно-ядные, другие — хищные, третьи — паразиты;
    3) организмы-разрушители — черви, грибы, бактерии.
    3. Биотические факторы среды — все взаимодействующие между собой живые обитатели хвойного леса. Абиотические факторы — свет, влажность, температура, воздух и др.
    4. Небольшое число видов по сравнению с дубравой, недостаток света, бедный опад, малоплодородная почва обусловили короткие цепи питания в хвойном лесу. Пример: растения (хвойные и др.) —» растительноядные животные (белка)
    —» хищные (лисица).
    5. Саморегуляция — механизм поддержания численности популяций на определенном уровне (особи одного вида не уничтожают полностью особей другого вида, а лишь ограничивают их численность). Значение саморегуляции для сохранения устойчивости экосистемы.
    3. Надо приготовить микроскоп к работе: положить микропрепарат на предметный столик, осветить поле зрения микроскопа, с помощью винтов добиться четкого изображения, найти клетку со следующими признаками профазы: ядро имеет оболочку, в нем расположены компактные тельца — хромосомы, каждая из них состоит из двух хроматид (хотя хро-матиды не видны в световой микроскоп).

    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.