МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Радиационные аварии, их виды, динамика развития, основные опасности

    Радиационные аварии, их виды, динамика развития, основные опасности

    ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

    ГОСУДАРСТВЕННОЕ

    ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

    ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

    РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ

    ВОРОНЕЖСКИЙ ФИЛИАЛ

    Кафедра математики и естественно научных дисциплин









    Контрольная работа

    по дисциплине: "Безопасность жизнедеятельности"

    Тема: "Радиационные аварии, их виды, динамика развития, основные опасности"









    Воронеж 2008 г.


    План

    1. Радиационно-опасные объекты (РОО)

    2. Основные опасности при авариях на РОО

    3. Приборы радиационной разведки и дозиметрического контроля

    4. Мероприятия по ограничению облучения населения и его защите в условиях радиационной аварии

    5. Алгоритм действий при поступлении сообщения о радиационной опасности

    Список использованной литературы


    1. Радиационно-опасные объекты (РОО)


    Под радиационно-опасными понимаются объекты, использующие в технологических процессах или имеющие на хранении радиоактивные вещества, которые в случае аварии вызывают опасные для здоровья людей и окружающей среды загрязнения.

    Радиационная авария - происшествие, приведшее к выходу (выбросу) радиоактивных продуктов и ионизирующих излучений за предусмотренные проектом пределы (границы) в количествах, превышающих установленные нормы безопасности.

    Основным показателем степени потенциальной опасности РОО при прочих равных условиях (надежность технологических процессов, качество профессиональной подготовки специалистов и т.д.) является общее количество радиоактивных веществ, находящихся на каждом из них.

    К радиационно-опасным объектам относятся:

    атомные станции различного назначения;

    предприятия по регенерации отработанного топлива и

    временному хранению радиоактивных отходов;

    научно-исследовательские организации, имеющие

    исследовательские реакторы или ускорители частиц; морские

    суда с энергетическими установками;

    хранилища ядерных боеприпасов; полигоны, где проводятся

    испытания ядерных зарядов.

    Кроме того, ионизирующее излучение, опасное для здоровья людей, может исходить и от таких широко распространенных техногенных источников, как медицинская рентгенодиагностическая аппаратура и приборы, основанные на использовании радиоактивных изотопов, применяемые в строительной индустрии, геологии и т.д.

    Из перечисленных радиационно-опасных объектов наибольшим количеством радиоактивности обладают работающие ядерные реакторы. Чем больше мощность реактора, тем больше количество продуктов деления накапливается в нем за одно и то же время работы. Грозную опасность для жизни и здоровья населения несут чрезвычайные ситуации, связанные с возможностью радиационного заражения. Достаточно сказать, что период полураспада, т.е. времени снижения мощности радиоактивного излучения на 50%, урана-235 и плутония-239 составляет около 25 тыс. лет, а именно эти элементы используются в ядерном оружии. Ядерное топливо активно применяется для производства электроэнергии. В 26 странах мира на атомных электростанциях насчитывается 430 энергоблоков (строятся еще 48). Они вырабатывают энергии: во Франции - 75% (от производимой в стране), в Швеции - 51, в Японии - 40, в США - 24, в России - 15%.

    В Российской Федерации имеется 33 энергоблока на 10 АЭС, 113 исследовательских ядерных установок, 13 промышленных предприятий топливного цикла, а также около 13 тыс. других предприятий и объектов, осуществляющих деятельность с использованием радиоактивных веществ и изделий на их основе.

    Для обеспечения надежной работы АЭС и радиационной безопасности персонала и населения проектами предусматриваются соответствующие системы безопасности. Например, на АЭС с водно-паровым энергетическим реактором имеется пять барьеров безопасности. Это независимые друг от друга препятствия на пути ионизирующих излучений от топлива до окружающей среды. В результате ослабления ионизирующих излучений барьерами безопасности облучение населения, проживающего вблизи от АЭС типа ВПЭР, при ее безаварийной работе не превышает 0,2 мбэра в год.

    В соответствии с вышеизложенным Минздравом России в 1999 г. были утверждены нормы радиационной безопасности (НРБ-99) на основании следующих нормативных документов: Федеральный закон "О радиационной безопасности населения" № 3-ФЗ от 09.01.96 г.; Федеральный закон "О санитарно-эпидемиологическом благополучии населения" № 52-ФЗ от 30.03.99 г.; Федеральный закон об использовании атомной энергии" № 170-ФЗ от 21.11.95г.; Закон РСФСР "Об охране окружающей природной среды" № 2060-1 от 19.12.91 г.; Международные основные нормы безопасности для защиты от ионизирующих излучений и безопасности источников излучений, принятые совместно: Продовольственной и сельскохозяйственной организацией Объединенных Нации; Международным агентством по атомной энергии; Международной организацией труда; Агентством по ядерной энергии организации экономического сотрудничества и развития; Панамериканской организацией здравоохранения и Всемирной организацией здравоохранения (серия безопасности № 115), 1996 г.; Общие требования к построению, изложению и оформлению санитарно-гигиенических и эпидемиологических нормативных и методических документов. Руководство Р 1.1.004-94. Издание официальное. М. Госкомсанэпиднадзор России. 1994 г.

    За всю историю атомной энергетики (с 1954 г.) во всем мире было зарегистрировано более 300 аварийных ситуаций (за исключением СССР). В СССР, кроме аварии на ЧАЭС, другие аварии были неизвестны. Наиболее крупные выбросы РВ приводятся в таблице:

     

    Таблица № 1. Выбросы радиоактивных веществ, представляющие угрозу для населения

    Год, место

    Причина

    Активность, МКи

    Последствия

    1957,Южный Урал

    Взрыв хранилища

    с высокоактивными отходами

    20,0

    Загрязнено 235 тыс. км. кв. территории

    1957,Англия,

    Уиндскейл

    Сгорание графита во время отжига и повреждения твэлов

    0,03

    РА облако распро-странилось на север до Норвегии и на запад до Вены

    1945-1989


    Произведено 1820 ядерных взрывов; из них 483 в атмосфере

    40,0 по

     и

    Загрязнение атмосферы и по следу облака

    1964

    Авария спутника с ЯЭУ

    -

    70% активности выпало в Южном полушарии

    1966,Испания

    Разброс ядерного топлива двух водородных бомб

    -

    Точные сведения отсутствуют

    1979,США

    Срыв предохранительной мембраны первого контура тепло-носителя

    0,043

    Выброс 22,7 тыс. тонн загрязненной воды, 10% РА веществ выпало в атмосферу

    1986, СССР,

    Чернобыль

    Взрыв и пожар четвертого блока

    50

    Несоизмеримы со всеми предыдущими

    2. Основные опасности при авариях на РОО


    В настоящее время практически любая отрасль хозяйства и науки использует радиоактивные вещества и источники ионизирующих излучений. Высокими темпами развивается ядерная энергетика.

    Ядерные материалы приходится возить, хранить, перерабатывать. Это создает дополнительный риск радиоактивного загрязнения окружающей среды, поражения людей, животных и растительного мира.

    В результате аварий могут возникнуть обширные зоны радиоактивного загрязнения местности и происходить облучение персонала ядерно - и радиационно-опасных объектов (РОО) и населения, что характеризует создавшуюся ситуацию как чрезвычайную. Степень опасности и масштабы этой ЧС будут определяться количеством и активностью выброшенных радиоактивных веществ, а также распад ионизирующих излучений.

    Радиационные аварии подразделяются на:

    ·                   локальные - нарушение в работе РОО, при котором не произошел выход радиоактивных продуктов или ионизирующих излучений за предусмотренные границы оборудования, технологических систем, зданий и сооружений в количествах, превышающих установленные для нормальной эксплуатации предприятия значения;

    ·                   местные - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов в пределах санитарно-защитной зоны и в количествах, превышающих установленные нормы для данного предприятия;

    ·                   общие - нарушение в работе РОО, при котором произошел выход радиоактивных продуктов за границу санитарно-защитной зоны и в количествах, приводящих к радиоактивному загрязнению прилегающей территории и возможному облучению проживающего на ней населения выше установленных норм.

    К типовым радиационно-опасным объектам следует отнести: атомные станции, предприятия по изготовлению ядерного топлива, по переработке отработанного топлива и захоронению радиоактивных отходов, научно-исследовательские и проектные организации, имеющие ядерные реакторы, ядерные энергетические установки на транспорте.

    Классификация аварий на радиационно-опасных объектах проводится с целью заблаговременной разработки мер, реализация которых в случае аварии должна уменьшить вероятные последствия и содействовать успешной их ликвидации.

    Возможные аварии на АЭС и других радиационно-опасных объектах классифицируют по двум признакам:

    ·                   по типовым нарушениям нормальной эксплуатации;

    ·                   по характеру последствий для персонала, населения и окружения среды.

    При анализе аварий используют цепочку "исходное событие-пути протекания-последствия".

    Аварии, связанные с нарушениями нормальной эксплуатации, подразделяются на проектные, проектные с наибольшими последствиями и запроектные. Под нормальной эксплуатацией АЭС понимается ее состояние в соответствии с принятой в проекте технологией производства энергии, включая работу на заданных уровнях мощности, процессы пуска и остановки, техническое обслуживание, ремонты, перегрузку ядерного топлива.

    Причинами проектных аварий, как правило, являются исходные события, связанные с нарушением барьеров безопасности, предусмотренных проектом каждого реактора. Именно в расчете на эти исходные события и строится система безопасности АЭС.

    Первый тип аварий - нарушение первого барьера безопасности, а проще - нарушение герметичности оболочек твэлов (тепловыделяющих элементов) из-за кризиса теплообмена или механических повреждений. Кризис теплообмена - это нарушение температурного режима (перегрев) твэлов.

    Второй тип аварий - нарушение первого и второго барьеров безопасности. При попадании радиоактивных продуктов в теплоноситель вследствие нарушения первого барьера дальнейшее их распространение останавливается вторым, который образует корпус реактора.

    Третий тип аварий - нарушение всех барьеров безопасности. При нарушенных первом и втором барьерах теплоноситель с радиоактивными продуктами деления удерживается от выхода в окружающую среду третьим барьером - защитной оболочкой реактора. Под ним понимается совокупность всех конструкцией, систем и устройств, которые должны с высокой степенью надежности обеспечить локализацию выбросов.

    Ядерную аварию может вызвать также образование критической массы при перегрузке, транспортировке и хранении твэлов. всех барьеров безопасности.

    Основными поражающими факторами радиационных аварий являются:

    ·                   воздействие внешнего облучения (гамма - и рентгеновского; бета - и гамма-излучения; гамма - нейтронного излучения и др.);

    ·                   внутреннее облучение от попавших в организм человека радионуклидов (альфа - и бета-излучение);

    ·                   сочетанное радиационное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения;

    ·                   комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.).

    После аварии на радиоактивном следе основным источником радиационной опасности является внешнее облучение. Ингаляционное поступление радионуклидов в организм практически исключено при правильном и своевременном применении средств защиты органов дыхания.

    Внутренне облучение развивается в результате поступления радионуклидов в организм с продуктами питания и водой. В первые дни после аварии наиболее опасны радиоактивные изотопы йода, которые накапливается щитовидной железой. Наибольшая концентрация изотопов йода обнаруживается в молоке, что особенно опасно для детей.

    Через 2-3 месяца после аварии основным агентом внутреннего облучения становится радиоактивный цезий, проникновение которого в организм возможно с продуктами питания. В организм человека могут попасть и другие радиоактивные вещества (стронций, плутоний), загрязнение окружающей среды которыми имеет ограниченные масштабы.

    Характер распределения радиоактивных веществ в организме:

    ·                   накопление в скелете (кальций, стронций, радий, плутоний);

    ·                   концентрируются в печени (церий, лантан, плутоний и др.);

    ·                   равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.);

    ·                   радиоактивный йод избирательно накапливается в щитовидной железе (около 30%), причем удельная активность ткани щитовидной железы может превышать активность других органов в 100-200 раз.

    Основными параметрами, регламентирующими ионизирующее излучение, является экспозиционная, поглощенная и эквивалентная дозы.

    Экспозиционная доза - основана на ионизирующем действия излучения, это - количественная характеристика поля ионизирующего излучения. Единицей экспозиционной дозы является рентген (Р). При дозе 1Р в 1см2 воздуха образуется 2,08 · 109 пар ионов. В международной системе СИ единицей дозы является кулон на килограмм (Кл/кг) · 1Кл/кг=3876 Р.

    радиационная авария облучение дозиметрический

    Поглощенная доза - количество энергии, поглощенной единицей массы облучаемого вещества. Специальной единицей поглощенной дозы является 1 рад. В международной системе СИ - 1 Грей (Гр).1 Гр=100 рад.

    Эквивалентная доза (ЭД) - единицей измерения является бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, которая при хроническом облучении вызывает такой же эффект, что и 1 рад рентгеновского или гамма-излучения. В международной системе СИ единицей ЭД является Зиверт (Зв).1 Зв равен 100 бэр.

    Организм человека постоянно подвергается воздействию космических лучей и природных радиоактивных элементов, присутствующих в воздухе, почве, в тканях самого организма. Уровни природного излучения от всех источников в среднем соответствуют 100 мбэр в год, но в отдельных районах - до 1000 мбэр в год.

    В современных условиях человек сталкивается с превышением этого среднего уровня радиации. Для лиц, работающих в сфере действия ионизирующего излучения, установлены значения предельно допустимой дозы (ПДД) на все тело, которая при длительном воздействии не вызывает у человека нарушения общего состояния, а также функций кроветворения и воспроизводства (таблица №2)

    Таблица № 2. Значение предельно допустимых концентраций некоторых радиоактивных веществ и предельно допустимых доз облучения людей

    Предельно допустимые концентрации радиоактивности


    Предельно допустимые значения критериев

    Йод-131

    Цезий-137

    Стронций-90

    Плутоний-239,240

    В почве Ки/км

    -

    1

    0,3

    0,1

    В воде Ки/л

    1· 10-8

    1,5 · 10-8

    4,0 · 10-8

    5,2 · 10-9

    В воздухе Ки/л

    1,5 · 10-13

    4,9 · 10-14

    4,0 · 10-14

    3,0 · 10-17


    Предельно допустимые дозы облучения людей

    Персонал радиационно-опасных объектов

    20 мЗв (2 бэр) в год в среднем за любые 5 лет, но не более 50 мЗв (5 бэр) в год.

    Население

    1 мЗв (0,1 бэр) в год в среднем за любые 5 лет, но не более 5 мЗв (0,5бэр) в год

    Лица, привлекаемые к ликвидации последствий аварии

    200 мЗв (20 бэр) за время работы

    Страницы: 1, 2


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.