МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Обеспечение взрывобезопасности при ликвидации весеннего затора на реке

    При ликвидации весеннего затора на реке Белая не были соблюдены безопасные расстояния взрыва для взрывников и ящика с взрывчатыми материалами. Вследствие передачи детонации от заряда взрывчатого вещества к ящику взрывчатых веществ произошла детонация с последующим взрывом 35 кг аммонита 6ЖВ.

    Дерево отказов такого сценария приведено на рисунке 2.5.


    Рисунок 2.5 – Дерево "отказов" для события "Взрыв аммонита"


    Рассчитаем вероятность возникновения взрыва аммонита. Для этого сначала определим вероятности событий Б, В и Г. Исходные вероятности определены экспертным методом.

    Вероятность реализации события Г:


    Р(Г) = 1 – (1 - 2·10-3) · (1 - 7·10-4) · (1 - 2·10-3) · (1 - 4·10-6) = 4,7·10-3


    Вероятность возникновения детонации (событие Б) равна:


    Р(Б) = 2,1·10-6 · 4,7·10-3 = 9,86·10-7


    Вероятность механического воздействия поражающих факторов других взрывов (В):


    Р(В) = 2,1·10-6 · 4·10-3 = 8,4·10-7


    Вероятность головного события, аварийного взрыва аммонита, равна:


    Р(А) = 1 – (1– 8,2·10-4) · (1– 9,86·10-7) · (1- 9·10-6) · (1– 8,4·10-7) = 8,2·10-2


    Значит, вероятность несанкционированного взрыва аммонита при проведении взрывных работ по ликвидации весеннего затора равна 8 раз в тысячу лет.

    Таким образом, в данном разделе изучены специфика заторных наводнений и методы ликвидации последствий таких наводнений. Определен наиболее эффективный и универсальный способ борьбы с заторообразованием – взрывной метод. В качестве взрывчатого вещества при таких аварийно-спасательных и других неотложных работах используют Аммонит 6ЖВ [12].

    При работе с поверхностными зарядами следует соблюдать технику безопасности и безопасные расстояния, учитывающие зону действия поражающих факторов взрыва. Зачастую такие расстояния не соблюдаются, что приводит к взрыву ящика с запасами взрывчатых веществ и получению травм взрывников, участвующих в ликвидации.

    Также рассмотрены основные причины несанкционированных взрывов при обращении Аммонита 6ЖВ. Используя анализ причин, спроектировано дерево "отказов". Рассчитана вероятность наступления события, выбранного за наиболее опасное при проведении взрывных работ.

    В следующем разделе необходимо рассчитать безопасные расстояния при проведении ликвидации затора на реке Белая и зоны действия поражающих факторов взрыва Аммонита 6ЖВ.


    2. Расчет безопасных расстояний при проведении взрывных работ по ликвидации весеннего затора


    Исходя из вышеизложенного сценария, необходимо рассчитать безопасные расстояния для зданий сооружений, людей и других зарядов Аммонита 6ЖВ.

    Прогноз обстановки в зоне ЧС служит основой для принятия четких и скоординированных действий по ликвидации. Также на основе данных об обстановке можно рассчитать индивидуальный и социальный риск.

    Цель данного раздела - определить безопасные расстояния и зоны воздействия поражающих факторов, количество людей и зарядов, попадающих в эту зону.


    2.1 Поражающие факторы взрыва Аммонита 6ЖВ


    Для практического применения в качестве промышленных взрывчатых веществ пригодны только такие индивидуальные химические вещества или смеси, которые способны к самораспространению в них реакции взрыва от соответствующего инициирующего импульса. Современные взрывчатые вещества представляют собой химические соединения (гексоген, тротил и др.), или механические смеси (аммиачно – селитренные и нитроглицериновые ВВ).

    Основные свойства взрывчатых веществ определяются взрывчатыми и физико-химическими характеристиками.

    Взрывчатые характеристики Аммонита 6ЖВ:

    – теплота взрыва – 950 ккал/кг;

    – температура продуктов взрыва 2600°С;

    – скорость детонации – 5000 м/с;

    – бризантность (способность взрывчатых веществ дробить прилегающую к нему среду) - 10-12 мм;

    – работоспособность (фугасность проявляется в форме выброса грунта из воронок, образование полостей в грунтах и рыхление их) - 350 см3;

    Физико-химические характеристики:

    – чувствительность к механическим и тепловым воздействиям;

    – химическая и физическая стойкость;

    – плотность.

    Основными поражающими факторами при взрыве Аммонита 6ЖВ являются:

    1) Воздушная ударная волна – слой сжатого воздуха, оторвавшийся от продуктов взрыва за счет полученной энергии и двигающийся самостоятельно со сверхзвуковой скоростью [7,15].

    Увлеченный и двигающийся за фронтом ударной волны воздух оставляет за собой область разряжения, в которой давление падает ниже атмосферного.

    В фазе сжатия среда перемещается в направлении распространения волны, в фазе расширения в обратном. Детонация объясняется распространением ударной волны во взрывчатом веществе. Ударная волна возбуждается начальным импульсом. Распространение взрыва во взрывчатом веществе происходит со скоростью 1…9 км/сек. За фронтом волны происходит мгновенное разогревание частиц взрывчатого вещества пузырьков газа между ними, в результате чего возникает интенсивная реакция с выделением тепла, энергия которой поддерживает распространение ударной волны и его детонацию.

    На фронте ударной волны в заряде взрывчатого вещества возникают давления в десятки раз превышающие прочность межатомных связей. Ударная волна разрушает молекулы вещества. Освободившись от первоначальных межатомных связей нагретые до высокой температуры горючие элементы углерод, водород, азот, и др. вступают, в зоне за фронтом ударной волны, в бурную химическую реакцию с выделением тепла и превращением взрывчатого вещества в газообразное состояние. За фронтом ударной волны движется фронт расширения продуктов взрыва, а к центру заряда - фронт разрежения. Энергия, выделяющаяся при реакции, догоняет фронт ударной волны и подпитывает его не давая затухнуть.

    Совокупность ударной волны и прилегающей к ней зоны взрывчатого превращения ВВ называется детонационной волной.

    Устойчивость (скорость) детонации зависит от:

    - характеристики ВВ;

    а) тип ВВ, из каких элементов состоит;

    б) степень раздробленности (дисперсности);

    в) плотность ВВ в заряде.

    - диаметра заряда;

    - условий взрывания (наружный или внутренний заряд, наличие забойки)

    Критический диаметр заряда (Дкр) - диаметр заряда ниже, которого детонация становится неустойчивой. С увеличением диаметра заряда больше критического скорость детонации увеличивается до определенного значения диаметра заряда называемого предельным [10,12,13].

    Полная работа взрыва - это работа ВВ при дальнейшем увеличении диаметра которых скорость детонации не увеличивается. На рисунке 2.1 представлена зависимость скорости детонации от диаметра ВВ.


    Рисунок 2.1 - График зависимости скорости детонации от диаметра взрывчатого вещества (ВВ)


    Критический диаметр детонации Аммонита 6ЖВ 100 мм и т.к. это смесевое взрывчатое вещество, скорость детонации будет меньше, чем у однородного взрывчатого вещества.

    2) Разлет осколков, обломков и кусков грунта существенно зависит от веса заряда взрывчатого вещества, материала разрушаемого (перебиваемого) взрывом объекта и расположения заряда на объекте.

    Очевидно, чем больше вес взрываемого заряда взрывчатого вещества, тем больше и разлет осколков; при этом мелкие осколки (куски), обладая меньшей массой, из-за сопротивления воздуха быстрее будут терять приобретенную ими скорость, чем осколки более крупные.

    Расположение заряда на разрушаемом объекте сказывается тем, что в сторону, противоположную той, на которой размещен наружный заряд, осколки будут разлетаться дальше. Наименьшая дальность разлета будет в ту сторону, с которой расположен у объекта наружный заряд. При внутренних зарядах, если не принято специальных мер к направлению разлета основной массы разрушаемого объекта, разлет осколков происходит равномерно во все стороны [7].

    Ниже приводятся некоторые данные по практически установленной дальности разлета осколков. Величина этой дальности и принимается в качестве минимального безопасного расстояния от очага взрыва - при взрывании льда и грунта на дне водоема – 100 м.

    Зависимость между глубиной расположения заряда, его весом (по показателю действия взрыва) и максимальной дальностью разлета кусков, которая выражается формулой:


    L = 140 · n ·, (2.1)


    где L – дальность разлета отдельных кусков породы (грунта), м;

    n – показатель действия взрыва;

    h– глубина заложения заряда (линия наименьшего сопротивления), м.

    3) Действие ядовитых газов, на которые приходится 5…10% от общего объема газообразных продуктов взрыва:

    - окись углерода;

    - окислы азота;

    - сернистые газы;

    - пары ртути и свинца.

    Кислородный баланс это отношение избытка или недостатка кислорода с составе взрывчатого вещества к его количеству, необходимому для полного окисления горючих элементов вещества. Желательно, чтобы при реакции взрыва образовались наименее опасные для организма человека вещества (пары воды, азот, углекислый газ).

    Когда в составе взрывчатого вещества недостаток кислорода по сравнению с необходимым при взрыве образуется угарный газ - имеет место отрицательный кислородный баланс.

    Когда взрывчатое вещество содержит избыток кислорода (положительный кислородный баланс) при взрыве образуются окислы азота, кроме того, при взрыве взрывчатого вещества с нулевым кислородным балансом выделяется максимум энергии.

    4) Сейсмовзрывная волна (сотрясательное действие) взрыва проявляется только при взрывах, происходящих внутри грунта, скальной породы или льда, которые за пределами зоны разрушения претерпевают упругие колебания. Характер этих колебаний (период, амплитуда и скорость распространения) зависит от мощности взрыва и свойств среды.

    Колебания среды в свою очередь вызывают колебания сооружений, расположенных в этой среде или на ее поверхности, что может привести к образованию трещин в сооружении или его разрушению.


    2.2 Расчет безопасных расстояний при взрыве заряда массой 5 кг


    При производстве взрывных работ в любой обстановке основное внимание должно уделяться безопасности работ и мерам обеспечения безотказности взрыва. Безотказность взрыва зависит от качества подготовки и должной проверки всех зарядов, взрывных сетей и устройств и содержания их полной исправности [13]. Безопасность выполнения взрывных работ зависит от строгого соблюдения мер, обеспечивающих безопасность лиц, непосредственно подготавливающих и производящих взрывы, посторонних лиц и населения, а также сооружений, расположенных вблизи места взрыва. Эта безопасность определяется расстоянием, на которое распространяется действие взрыва, выражающееся в непосредственном действии расширяющихся продуктов взрыва, действии ударной воздушной волны, в сейсмическом действии взрыва и в разлете кусков раздробленной взрывом среды.


    2.2.1 Безопасные расстояния по действию воздушной ударной волны

    Избыточное давление во фронте ударной волны (Рф) - это разность между максимальным давлением во фронте ударной волны и нормальным атмосферным давлением (Ро), измеряется в Паскалях (Па). Избыточное давление во фронте ударной волны рассчитывается по формуле:


     кПа (2.2)


    где: ΔРф - избыточное давление, кПа;

    qэ - тротиловый эквивалент взрыва (qэ = 0,5·q = 0,5·5 = 2,5 кг, q - мощность взрыва, 5 кг);

    R - расстояние от центра взрыва, 8 м.

    При защите сооружений от разрушения их ударной воздушной волной не всегда имеется возможность выдержать такие безопасные расстояния, на которых объект не получит никаких повреждений.

    Безопасные расстояния по действию воздушной ударной волны определяются в зависимости от веса заряда, рассчитаем для зоны растекления:


     м, (2.3)


    где С – вес (масса) заряда Аммонита 6ЖВ, 5 кг;

    kв – коэффициент, зависящий от веса заряда, его расположения и характера допустимых повреждений в окружающих сооружениях (т.е. допустимой степени безопасности); применяется по таблице А.1 в Приложении А [12].

    Для зоны слабых разрушений:


     м, (2.4)


    для зоны средних разрушений:


     м, (2.5)


    для зоны сильных разрушений:


     м, (2.6)


    для зоны полных разрушений:


     м, (2.7)


    Минимальное безопасное расстояние для человека по действию на него ударной волны рассчитывается по формуле


     м, (2.8)


    где С - вес (масса) заряда, кг.

    При подсчете по формуле величина избыточного давления примерно равно 0,1 кгс/см2 и гарантирует получение контузии и другие травмы.

    Если взрывные работы проводятся при отрицательной температуре воздуха, безопасное расстояние, определенное по формулам (2.3) - (2.8), должно быть увеличено не менее чем в 1,5 раза. Но так как взрывные работы на реке Белая проводятся в светлое время суток при положительных температурах, можно пренебречь увеличением безопасных расстояний.


    2.2.2 Безопасные расстояния, исключающие передачу детонации от одного заряда взрывчатого вещества к другому

    Ударная воздушная волна на некоторых расстояниях, сохраняя еще значительную мощность, способна вызвать детонацию во встретившемся на ее пути взрывчатом веществе. Иногда это явление бывает полезным и может быть использовано для взрывания нескольких "пассивных" зарядов взрывчатого вещества от взрыва одного "активного" заряда, взрываемого зажигательной трубкой или электродетонатором.

    Однако в большинстве случаев приходится, наоборот, оберегать один заряд от взрыва соседнего заряда, т.е. располагать его на таких расстояниях, при которых был бы невозможен его взрыв. В этом случае расчет безопасного расстояния ведется по формуле


    м, (2.9)


    где С – вес (масса) активного заряда, кг;

    D – наименьший линейный размер пассивного заряда, равный ширине заряда или удвоенной его высоте, м;

    Кd – коэффициент, зависящий от свойства активного и пассивного зарядов ВВ и их расположения (таблица А.2 Приложение А).


    2.2.3 Безопасные расстояния по разлету осколков

    Для расчета безопасных расстояний по разлету осколков за безопасное расстояние был принят удвоенный минимально допустимый радиус опасной зоны при взрыве наружного заряда.


     м, (2.10)


    Параметры сейсмовзрывной волны не рассчитываются, т.к. принимается, что заряд поверхностный [12].

    Таким образом, из расчетов следует, что ближайший к месту проведения работ населенный пункт Муксиново не попадает в зону действия поражающих факторов. Однако безопасные расстояния не соблюдены по действиям на людей, ликвидирующих затор и на ящик с оставшимися зарядами Аммонита 6ЖВ массой 35 кг (рисунок 2.2).


    Рисунок 2.2 – Зоны воздействия поражающих факторов на окружающую среду, взрывников и ящик с зарядами


    При таком взрыве получили серьезные травмы головы два взрывника, находившихся в зоне средних разрушений. Ящику со взрывчатыми материалами передалось инициирующее действие и произошла детонация взрывчатых веществ [7].

    Рассчитаем параметры взрыва ящика с Аммонитом 6ЖВ, если масса взрывчатых веществ в нём равна 35 кг.


    2.3 Определение параметров взрыва Аммонита 6ЖВ массой 35 кг


    Расстояния воздействия воздушной ударной волны условно делят на пять зон. Используя формулу (2.3.) и таблицу А.1 Приложения А, определим радиусы зоны растекления, в которой избыточное давление во фронте ударной волны равно менее 10 кПа:


     м, (2.11)


    Зона слабых разрушений (10…20 кПа), в которой будут наблюдаться частичные повреждения рам, дверей, нарушение штукатурки и внутренних легких перегородок:

     м, (2.12)


    Зона средних разрушений (20…30 кПа), которой присущи разрушения внутренних перегородок, рам, дверей, бараков, сараев и т.п.:


     м, (2.13)


    Зона сильных разрушений имеет следующие характеристики: разрушение малостойких каменных и деревянных зданий, опрокидывание железнодорожных составов, повреждение линий электропередачи, давление во фронте ударной волны от 30…50 кПа, радиус действия равен:


     м, (2.14)


    Зона полных разрушений, характеризуемая проломом прочных кирпичных стен, полным разрушением коммунальных и промышленных сооружений, повреждение мостов и железнодорожного полотна:


     м, (2.15)


    Избыточное давление во фронте ударной волны (Рф) рассчитывается по формуле (2.2):


     кПа


    где: ΔРф - избыточное давление, кПа;

    qэ - тротиловый эквивалент взрыва (qэ = 0,5·q = 0,5·35 = 17,5 кг, q - мощность взрыва, 35 кг);

    R - расстояние от центра взрыва, 3 м.

    По формуле (2.10) минимальное безопасное расстояние для человека по действию на него ударной волны рассчитаем по формуле:


     м,


    Безопасное расстояние по разлету осколков рассчитывается согласно пункту 2.2.2 и за безопасное расстояние принимается удвоенный минимально допустимый радиус опасной зоны при взрыве наружного заряда.


     м, (2.16)


    Находим импульс волны давления i по формуле:


    i = 123∙ (34,6)0,66 / 3 = 425,2 Па · с, (2.17)


    Исходя из проведенных расчетов, бригада взрывников попадает в зону избыточного давления, приводящего к летальному исходу. Обстановка по действию поражающих факторов нанесена на карту, приведенную на рисунке 2.3 [13,15].


    Рисунок 2.3 – Обстановка в зоне ЧС, вызванной взрывом ящика с Аммонитом массой 35 кг

    Таким образом, учитывая рисунок 2.2 и вышеизложенные расчеты можно судить о действии поражающих факторов на инфраструктуру поселка Муксиново, а также на команду взрывников, в том числе автомобиль, находящийся на берегу.

    Так как здания в поселке Муксиново, попадающие в зону растекления, преимущественно деревянные одноэтажные, то степень их разрушения определяется разбитыми стеклами и развалившимися старыми гнилыми сооружениями. Автомобиль, стоящий на берегу, также попадает в зону растекления и может передать механическое воздействие на взрывчатые материалы внутри кузова, что может привести к пожару и взрыву. Команда взрывников получает смертельные травмы, несовместимые с жизнью.


    3. Расчет безопасных расстояний при хранении взрывчатых веществ на складе ЗАО "Бурибаевский гок"


    Взрывобезопасность необходимо обеспечивать не только при проведении взрывных работ, но и при хранении взрывчатых веществ на складах. Основным подходом в решении данной проблемы является обеспечение безопасных расстояний на стадии проектирования месторасположения хранилища до близлежащих населенных пнуктов.

    Согласно "Инструкции по определению безопасных расстояний при взрывных работах и хранении взрывчатых материалов", склад взрывчатых веществ должен располагаться на безопасном расстоянии от ближайшего населенного пункта при условии, что во взрыве будет участвовать вся масса хранимых взрывчатых веществ [8].

    Наибольшее количество вещества, способного участвовать во взрыве определяется массой взрывчатых материалов, находящихся во всех хранилищах склада, и составляет 120,3 тонн при максимальной загрузке.

    Целью данного раздела является – расчет безопасных расстояний от склада взрывчатых веществ до близлежащих населенных пунктов, оценка риска возникновения такого взрыва.


    3.1 Безопасные расстояния по действию воздушной ударной волны на здания и сооружения


    По месту расположения относительно земной поверхности склады взрывчатых материалов разделяются на поверхностные, полууглубленные, углубленные и подземные.

    К поверхностным относятся склады, основания хранилищ которых расположены на уровне поверхности земли; к полууглубленным - склады, здания хранилищ которых углублены в грунте ниже земной поверхности не более чем на карниз; к углубленным - у которых толща грунта над хранилищем составляет менее 15 м, и к подземным – у которых толща грунта соответственно - более 15 м.

    Страницы: 1, 2, 3, 4, 5


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.