МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Обеспечение безопасности жизнедеятельности работников в помещении компьютерного класса

    Источниками искусственного света являются преимущественно лампы накаливания  и люминесцентные лампы . Нормативными документами рекомендуется использование люминесцентных или газоразрядных ламп для организации системы искусственного освещения. Их достоинствами являются: экономичность, большой срок службы, равномерное освещение в поле зрения, отсутствие тепловых излучений, спектр излучения близок к спектру естественного цвета.

    По СанПиН 2.2.2.542-96 (6) в качестве источников света при искусственном освещении должны применяться преимущественно люминесцентные ламп. Люминесцентные лампы должны применяться для общего освещения помещений с работами I-IV разрядов, а также в общественных и административных зданиях.

    Для расчета требуемого числа и размещения светильника применяются метод удельной мощности, точечный метод и метод светового потока или коэффициента использования.

    Для проектирования системы искусственного освещения воспользуемся методом светового потока, так как будем рассчитывать равномерное общее освещение помещения при освещенности только в горизонтальной плоскости. Выбираем тип источника света: люминесцентная лампа. Согласно нормам, установленным для помещений с ПК минимальная освещенность РМ должна составлять300 лк в горизонтальной плоскости и  коэффициент естественной освещенности КЕО = 4%.

    Рабочее место оператора состоит из стола с размещенным на нем экраном, клавиатурой и подставкой под документ, кресла и подставки для ног. Высота рабочего стола оператора 0,68…0,84 м. Именно в этой плоскости должна обеспечивать достаточная освещенность.

    Тип светильника: подвесной диффузионный светильник для производственных и общественных помещений ЛСП02 с условным номером группы . Светильники типа ЛСП02 предназначены для работы при нормальных параметрах микроклимата в помещении, которые в зале с ПК обеспечиваются системой кондиционирования воздуха. Коэффициенты отражения от потолка 70%, от стен 50%, от пола 10%. Данные параметры рекомендуются нормами (5) и справочниками (19) и (20).


    Расчет системы общего освещения методом светового потока

    Определяем  высоту подвеса светильника над рабочей поверхностью: .

    Высота помещения . Высота рабочей поверхности стола по (5) . Высота свеса светильника от потолка . Итоговая высота  подвеса .

    Освещаемая площадь помещения:

    Индекс помещения:

    С учетом индекса помещения, коэффициентов отражения потолка стен и пола и типа выбранного светильника определяем коэффициент светового потока :

    Световой поток принятой лампы ,: по книгам (19) и (20) выбираем характеристики, соответствующие типу лампы - ЛБ: - ,  - (минимальная) и (средняя),  после  горения 4800+/-250 лм. Таким образом, световой поток .

    Потребное количество светильников:

    ,  (коэффициент затенения для помещений с фиксированным положением оператора),  (коэффициент неравномерности освещения), - количество люминесцентных ламп в светильнике. Мы выбираем светильник с двумя люминесцентными лампами .

    Из расчетов видно, что для зала с компьютерами требуется  светильников типа . Значение  принимаем к размещению светильников.

    Разработка рациональной схемы равномерного размещения светильников

    Наилучшими вариантами размещения светильников в помещении является шахматное размещение или расположение светильников по сторонам квадрата (расстояние  между светильниками в ряду и между рядами светильников равны) при четном числе светильников. При размещении светильников с люминесцентными лампами последние располагают рядами – параллельно рядам оборудования или оконным проемам. Так же могут быть предусмотрены разрывы между светильниками.

    Характеристики выбранного светильника:

    ·          Длина

    ·          Ширина

    ·          Высота

    ·          Две лампы типа  мощностью по  каждая.

    Размеры помещения 12х6 м. С учетом характеристик светильника получаем схему рационального расположения светильников в помещении. Воспользуемся разработанной методикой, позволяющей рационально разместить светильники с люминесцентными лампами в помещении. По конструктивным особенностям помещение предусматривает разрывы между светильниками, если невозможно разместить все светильники в один ряд:

    , где ,- длина светильника, ,- общая суммарная длина светильников, расположенных в ряд.

    Таким образом,  из анализа величины  следует, рациональным будет размещение светильников в 3 ряда по 7 светильников в каждом. Для этого необходимо увеличить число светильников с 20 до 21.

    Перед проектированием системы искусственного освещения нужно проверить фактическую освещенность в помещении при числе светильников 21:

    Полученная фактическая освещенность помещения находится в оптимальном диапазоне освещенности помещения согласно (5). Требуемая освещенность помещения компьютерного класса обеспечивается. Рассчитанную систему можно проектировать. Конструктивное решение представлено на рисунке 1.

    Проектирование местной системы кондиционирования воздуха для компьютерного класса в помещении “ОАО Электросвязь”


    Системы кондиционирования необходимы для автоматического поддержания в закрытых помещениях всех или отдельных параметров воздуха. Системы кондиционирования обеспечивают прием, рециркуляцию, подогрев, сушку, увлажнение и перемещение воздуха по помещению. Системы кондиционирования поддерживают оптимальные или допустимые величины показателей микроклимата.

    Методика расчета:

    1.       Выбор расчетных параметров наружного и внутреннего воздуха для теплого и холодного периода года.

    2.       Установка размеров помещения, в котором необходима местная система кондиционирования воздуха. Это геометрические размеры помещения.

    3.       Выявление избытков явного тепла зимой и летом, газовых и пылевых примесей, работающих людей.

    4.       Определение потребное количество воздуха.

    5.       выбор системы воздухообмена в помещении.

    6.       Расчет процессов обработки воздуха и подбор элементов по каталогам для монтирования местной системы кондиционирования.


    Кондиционирование следует предусматривать для обеспечения нормируемой чистоты и метеорологических условий воздуха в обслуживаемой или рабочей зоне помещения или отдельных его участков (СНиП 2.04.05-91 (8)).

    Проектирование МСКВ осуществляется для помещения с  геометрическими размерами . В помещении может одновременно работать  человек. Выбранное помещение отведено под специализацию по компьютерному моделированию. При определении расчетных параметров воздуха, последние определяют для теплого и холодного периода года.

    При выборе оптимальных параметров внутреннего воздуха и наружного воздуха воспользуемся приложениями 1, 2, 5,  (параметр Б) СНиП 2.04.05-91 (8), СН 512-78 (9).

    СН 512-78 рекомендует тепловыделения и влаговыделения от людей принимать из условия выполнения ими работ легкой категории для операторов ПК.

    По ГОСТ 12.1.005-88 (4) тяжесть труда по энергозатратам нормируется по трем группам: легкие физические работы, работы средней тяжести, тяжелые физические работы.


    Легкие физические работы делятся на две подгруппы: работа выполняется сидя () и небольшие физические напряжения (). Работа оператора в компьютерном классе не требует перемещений по помещению или ограничивается минимальным перемещением от рабочего места. В основном это сидячая работа с небольшими физическими нагрузками.

    СН 512-78 (9) устанавливает технические нормативы по запыленности и загазованности воздуха в помещениях с ПЭВМ. Установленные нормативы значительно ниже ПДК, установленных СНиП 2.04.05-91 (8). ПДК пыли равен 6 мг/м3. ПДК этилового спирта . Запыленность воздуха в помещениях с ПЭВМ не должна превышать .

    Выбор схемы воздухообмена для конкретного помещения осуществляется по СНиП 2.04.05-91 (8). Распределение приточного воздуха и удаление воздуха из помещений общественных, административно-бытовых и производственных зданий следует предусматривать с учетом режима использования помещения в течение суток или года, с учетом переменных поступлений теплоты, влаги и вредных веществ.

    Приточный воздух следует подавать непосредственно в помещение с постоянным пребыванием людей. По СН 512-78 (9) можно выбрать одну из схем организации воздухообмена в залах с компьютерами следует принимать:

    1.        - при тепловой нагрузке, включая поступление тепла через ограждающие конструкции помещения, превышающей .

    2.        - с удалением воздуха  снизу и  сверху при тепловой нагрузке, превышающей .

    3.        - при тепловой нагрузке, включая поступление тепла через ограждающие конструкции помещения, не превышающей .

    Тепловая нагрузка в помещении с работающим ЭО можно найти как:

    - явные избытки тепла от работающего оборудования, тепла освещения, тепла солнечной радиации, тепла ограждающих конструкций и тепла человека. Обычно в помещениях с персональными ЭВМ, то есть в помещениях компьютерных классов применяют схему воздухообмена . 

    Тепловыделения от работающего оборудования берутся из паспортных данных на устройства ЭВМ и множительной техники. СН 512-78 (9)  рекомендует минимальный расход наружного воздуха в системах кондиционирования принимается из расчета  на одного оператора, но при этом должен обеспечиваться не менее чем двукратный воздухообмен в час.

    Исходные данные для расчета МСКВ

    1.       Температура наружного воздуха в теплый период года 26 oС и температура наружного воздуха в холодный период года -21 oС.

    2.       Температура воздуха внутри помещения в теплый период года 22.8 oС и температура воздуха внутри помещения в холодный период года 21 oС

    3.       Концентрация пыли в помещении 0.7 мг/м3.

    4.       Масса выделяющейся выли в помещении 24 мг/ч.

    5.       Концентрация паров этилового спирта 1000 мг/м3.

    6.       Масса выделяющихся паров этилового спирта в помещении 34200 мг/ч.

    7.       Тепловыделение от одной ЭВМ составляет 230 Вт.

    8.       Тепловыделение от одного работающего человека 140 Вт.

    9.       Общее явное избыточное тепло в холодный период года 3700 Вт а теплые время года 5500 Вт.

    10.    Площадь помещения 72 м2.

    11.    Тепловая нагрузка в холодное время года q =52 Вт/м2 и в теплое время года q = 78 Вт/м2

    12.    Схема воздухообмена “Сверху-вверх”, так как нагрузка не превышает 400 Вт/м2.


    Расчет местной системы кондиционирования воздуха

    Потребное количество воздуха  для обеспечения санитарно-гигиенических норм для компьютерного класса:

    Потребный расход по избыткам явного тепла летом:

    Потребный расход по избыткам явного тепла в холодный и переходный период:

    Потребный расход по выделяющимся вредностям (пыль, пары спирта) в помещении:


    Далее сравниваем величины найденных потребных расходов и принимаем к дальнейшему расчету наибольшую из них. Следовательно, расход потребного количества воздуха для обеспечения  санитарно-гигиенических норм равен

    Предел регулирования в холодный период года. Так как и , то .

    Потребное количество воздуха для обеспечения норм взрывопожарной безопасности. Расчет потребного количества воздуха ведется по массе выделяющихся вредных веществ в данном помещении, способных  к взрыву. Нижний концентрационный предел по этиловому спирту равен , а по пыли - .

    Потребное количество воздуха по пыли:

    Принимаем наибольшее значение из рассчитанных ранее значений требуемого расхода для обеспечения норм взрывопожарной безопасности по выделяющимся вредным веществам в помещении. Таким образом, принимаем расход

    Потребное количество кондиционированного воздуха  для данного помещения. Сравниваем потребные расходы для обеспечения норм взрывопожарной безопасности с потребным количеством воздуха для обеспечения санитарно-гигиенических норм: и . Для расчета принимаем величину .

    Минимальное количество наружного воздуха на работающих людей в данном помещении

    Выполняется неравенство . Значит значение  является потребной производительностью по воздуху местной системы кондиционирования воздуха с подачей  наружного воздуха и регулированием ее до  в холодный период года.



    Выбор типа автономного кондиционера

    В больших помещениях, МСКВ следует предусматривать не менее чем с двумя кондиционерами одинаковой производительности. При выходе из строя одного из кондиционеров необходимо обеспечить не менее  требуемого воздухообмена и заданную температуру в холодный период года. При наличии технологических требований к постоянству заданных параметров в помещении следует предусматривать установку резервных кондиционеров для поддержания требуемых параметров воздуха.

    Для зала с ПК в здании “ОАО Электросвязь” необходимо выбрать больше, чем два кондиционера. По таблице основных технических характеристик автономного кондиционера  выбираем тип автономного кондиционера, исходя из способа подачи воздуха в помещение и необходимой производительности по воздуху.

    Осуществим выбор типа автономного кондиционера для обеспечения схемы воздухообмена “Сверху – вверх”. Для обеспечения требуемой схемы воздухообмена подходят кондиционеры типов КТА2-5-02 и типа БК. Однако по конструктивным особенностям помещения предпочтительным является использование кондиционеров типа БК, так как они устанавливаются в окнах обслуживаемого помещения.

    В качестве автономного кондиционера выберем кондиционер типа БК, который устанавливают только в окнах (внизу или вверху) обслуживаемого помещения.

    Формулы для расчета потребного числа кондиционеров:

     и

    , при  и


    Характеристика

    Тип автономного кондиционера

    БК-1500

    БК-2000

    БК-2500

    БК-3500

    Производительность по воздуху,

    400

    500

    630

    800

    Холодопроизводительность

    1740

    2300

    2900

    3480

    12.9

    10.3

    8.2

    6.45

    3.2

    2.4

    1.9

    1.6


    Анализируем полученные данные в направлении определения необходимого числа кондиционеров . Условия выбора числа автономных кондиционеров: . Этому условию удовлетворяют все рассматриваемые кондиционеры. Выберем  более мощный кондиционер. Данным условиям удовлетворяет кондиционер типа БК-3000. Таких кондиционеров требуется для помещения 7, чтобы обеспечивать нормальные параметры микроклимата в помещении с ПК.


    Конструктивные решения

    Выбранный нами автономный кондиционер БК-3000 подходит для осуществления схемы воздухообмена . К установке в помещении необходимы 7 кондиционеров типа БК-3000. Размещение кондиционеров в помещении представлено на рисунке 3. Выбранные кондиционеры  размещают в обслуживающем помещении на окнах. В помещении обеспечиваются более комфортные условия работы по вибрации и шуму. Более мощные кондиционеры в данном случае выгоднее также с экономической точки зрения и меньшее количество кондиционеров проще обслуживать.

    Проектирование молниезащиты зданий и сооружений


    Для защиты здания от ударов молнии необходимо обеспечить его молниезащиту. Молниезащите подлежит здание “ОАО Электросвязь”. Его габаритные размеры: высота 20 м, длина фасада 20 м, глубина 40 м. Тип молниезащиты здания II (РД 34.21.122 (10)). Здание расположено в городской застройке, и часть здания отведена под компьютерные залы. Среднегодовая продолжительность гроз в Твери составляет . Следовательно, среднегодовое число ударов молнии в   земной поверхности составляет . Ожидаемое количество поражений молнией объекта в год составляет:

    Тип зоны защиты при использовании стержневых и тросовых молниеотводов относится к зоне Б.

    Здания и сооружения II категории по молниезащите должны быть защищены от прямых ударов молнии, вторичных ее проявлений и заноса высокого потенциала через наземные (надземные) и подземные металлические конструкции (РД 34.21.122 (10)).

    Для защиты здания “ОАО Электросвязь” от прямых ударов молнии берем молниеотвод стержневой, который состоит из молниеприемника, опоры, токоотвода и заземлителя. Обычно на практике металлическая мачта или ферма здания представляет собой молниепремник, опору и токоотвод одновременно. Стержневые молниеотводы будут установлены на нашем объекте.

    Выбираем число стержневых молниеотводов. При выборе числа стержневых молниеотводов будем руководствоваться утверждениями о том, что при больших размерах защищаемого объекта одиночный стержневой молниеотвод будет значительных размеров, двойной – огромных, что создаст трудности в их монтаже и обеспечении устойчивости. Поэтому чаще всего применяют многократный стержневой молниеотвод, который не имеет данных недостатков. Так как применение многократного стержневого молниеотвода будет рациональным, то дальнейший расчет молниезащиты проведем для многократного стержневого молниеотвода.

    Количество молниеотводов устанавливается в зависимости от ширины и длины объекта, а также его конфигурации. Для обеспечения защиты здания “ОАО Электросвязь” площадью 72 м2 достаточно будет 4-х стержневых молниеотводов.

    При расчетах будем использовать следующие величины: - высота защищаемого здания, - высота стержневого молниеотвода, - высота зоны защиты,- радиус зоны защиты на уровне земли, - радиус зоны защиты на высоте здания .

    Габаритные размеры одиночного стержневого молниеотвода для зоны типа Б:

                 

    При расчете зоны защиты многократных стержневых молниеотводов, высота одного стержневого молниеотвода вычисляется по формуле: .

    Если высота стержневого молниеотвода недостаточна для обеспечения защиты объекта по высоте, то необходимо увеличить  на . Для расчета многократных стержневых молниеотводов принимаем их высоту равной 25 м. Вычислим радиусы зон защиты системы молниеотводов:

    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.