МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Реферат: Уравнение Кортевега - де Фриса, солитон, уединенная волна

    Используя специальный подход, можно убе­диться, что принцип суперпозиции решений для уравнения Кортевега-де Фриса не выполняется, и поэтому это уравнение является нелинейным и описывает нелинейные волны.

    2.1. Солитоны Кортевега - де Фриса

    В настоящее время кажется странным, что от­крытие Рассела и его последующее подтверждение в работе Кортевега и де Фриса не получили замет­ного резонанса в науке. Эти работы оказались за­бытыми почти на 70 лет. Один из авторов уравне­ния, Д.Д. Кортевег, прожил долгую жизнь и был известным ученым. Но когда в 1945 году научная общественность отмечала его 100-летний юбилей, то в списке лучших публикаций работа, выполнен­ная им с де Фрисом, даже не значилась. Составите­ли списка сочли эту работу Кортевега не заслужива­ющей внимания. Только спустя еще четверть века именно эта работа стала считаться главным науч­ным достижением Кортевега.

    Однако если поразмыслить, то такое невнима­ние к уединенной волне Рассела становится понят­ным. Дело в том, что в силу своей специфичности это открытие долгое время считалось довольно част­ным фактом. В самом деле, в то время физический мир казался линейным и принцип суперпозиции считался одним из фундаментальных принципов большинства физических теорий. Поэтому никто из исследователей не придал открытию экзотичес­кой волны на воде серьезного значения.

    Возвращение к открытию уединенной волны на воде произошло в какой-то степени случайно и вна­чале, казалось, не имело к нему никакого отноше­ния. Виновником этого события стал величайший физик нашего столетия Энрико Ферми. В 1952 году Ферми попросил двух молодых физиков С. Улама и Д. Паста решить одну из нелинейных задач на ЭВМ. Они должны были рассчитать колебания 64 гру­зиков, связанных друг с другом пружинками, ко­торые при отклонении от положения равновесия на Dl приобретали возвращающуюся силу, равную kDl+a(Dl)2. Здесь k и a - постоянные коэффициен­ты. При этом нелинейная добавка предполагалась малой по сравнению с основной силой kDl. Созда­вая начальное колебание, исследователи хотели по­смотреть, как эта начальная мода будет распреде­ляться по всем другим модам. После проведения расчетов этой задачи на ЭВМ ожидаемого результа­та они не получили, но обнаружили, что перекачи­вание энергии в две или три моды на начальном этапе расчета действительно происходит, но затем наблюдается возврат к начальному состоянию. Об этом парадоксе, связанном с возвратом начального колебания, стало известно нескольким математи­кам и физикам. В частности, об этой задаче узнали американские физики М. Крускал и Н. Забуски, ко­торые решили продолжить вычислительные экспе­рименты с моделью, предложенной Ферми.

    После расчетов и поиска аналогий эти ученые установили, что уравнение, которое использовали Ферми, Паста и Улам, при уменьшении расстояния между грузиками и при неограниченном росте их числа переходит в уравнение Кортевега—де Фриса. То есть по существу задача, предложенная Ферми, сводилась к численному решению уравнения Кор­тевега—де Фриса, предложенного в 1895 году для описания уединенной волны Рассела. Примерно в те же годы было показано, что для описания ионно-звуковых волн в плазме используется также уравне­ние Кортевега—де Фриса. Тогда стало ясно, что это уравнение встречается во многих областях физики и, следовательно, уединенная волна, которая опи­сывается этим уравнением, является широко рас­пространенным явлением.

    Продолжая вычислительные эксперименты по моделированию распространения таких волн, Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега—де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для уединенных волн (8) следует, что скорость движения таких волн тем выше, чем боль­ше их амплитуда, а ширина пика уменьшается с ростом амплитуды. Таким образом, высокие уеди­ненные волны движутся быстрее. Волна с большей амплитудой догонит движущуюся впереди волну с меньшей амплитудой. Далее в течение некоторого времени две волны будут двигаться вместе как еди­ное целое, взаимодействуя между собой, а затем они разъединятся. Замечательным свойством этих-волн является то, что после своего взаимодействия форма и

    Рис. 2. Два солитона, описываемые уравнением Кортевега-де Фриса,

    до взаимодействия (вверху) и после (внизу)

    скорость этих волн восстанавливаются. Обе волны после столкновения лишь смещаются на не­которое расстояние по сравнению с тем, как если бы они двигались без взаимодействия.

    Процесс, у которого после взаимодействия волн сохраняются форма и скорость, напоминает упру­гое столкновение двух частиц. Поэтому Крускал и Забуски такие уединенные волны назвали солитонами (от англ. solitary- уединенный). Это специ­альное название уединенных волн, созвучное элек­трону, протону и многим другим элементарным частицам, в настоящее время общепринято.

    Уединенные волны, которые были открыты Рас­селом, и в самом деле ведут себя как частицы. Боль­шая волна не проходит через малую при их взаимо­действии. Когда уединенные волны соприкасаются, то большая волна замедляется и уменьшается, а волна, которая была малой, наоборот, ускоряется и подрастает. И когда малая волна дорастает до разме­ров большой, а большая уменьшается до размеров малой, солитоны разделяются и больший уходит вперед. Таким образом, солитоны ведут себя как уп­ругие теннисные мячи.

    Дадим определение солитона [4]. Солитоном на­зывается нелинейная уединенная волна, которая сохраняет свою форму и скорость при собственном движении и столкновении с себе подобными уеди­ненными волнами, то есть представляет собой ус­тойчивое образование. Единственным результатом взаимодействия солитонов может быть некоторый сдвиг фаз.

    Открытия, связанные с уравнением Кортевега - де Фриса, не закончились открытием солитона. Следующим важным шагом, имеющим отношение к этому замечательному уравнению, было создание нового метода решения нелинейных уравнений в частных производных. Хорошо известно, что най­ти решения нелинейных уравнений очень сложно. До 60-х годов нашего столетия считалось, что такие уравнения могут иметь только некоторые частные решения, удовлетворяющие специально заданным начальным условиям. Однако уравнение Кортевега—де Фриса и в этом случае оказалось в исключи­тельном положении.

    В 1967 году американские физики К.С. Гарднер, Дж.М. Грин, М. Крускал и Р. Миура показали, что решение уравнения Кортевега—де Фриса может быть в принципе получено для всех начальных усло­вий, которые определенным образом обращаются в нуль при стремлении координаты к бесконечности. Они использовали преобразование уравнения Кортевега - де Фриса к системе двух уравнений, называ­емой теперь парой Лакса (по имени американского математика Питера Лакса, внесшего большой вклад в развитие теории солитонов), и открыли новый ме­тод решения ряда очень важных нелинейных урав­нений в частных производных. Этот метод получил название метода обратной задачи рассеяния, по­скольку в нем существенно используется решение задачи квантовой механики о восстановлении по­тенциала по данным рассеяния.

    2.2. Групповой солитон

    Выше мы говорили, что на практике волны, как правило, распространяются группами. Подобные группы волн на воде люди наблюдали с незапамят­ных времен. На вопрос о том, почему для волн на воде так типичны "стаи" волн, удалось ответить Т. Бенжамену и Дж. Фейеру только в 1967 году. Тео­ретическими расчетами они показали, что простая периодическая волна на глубокой воде неустойчива (теперь это явление называется неустойчивостью Бенжамена—Фейера), и поэтому волны на воде из-за неустойчивости разбиваются на группы. Уравнение, с помощью которого описывается распространение групп волн на воде, было получено В.Е. Захаровым в 1968 году. К тому времени это уравнение уже было известно в физике и носило название нелинейного уравнения Шрёдингера. В 1971 году В.Е. Захаров и А.Б. Шабат показали, что это нелинейное уравне­ние имеет решения также в виде солитонов, более того, нелинейное уравнение Шрёдингера, так же как и уравнение Кортевега—де Фриса, может быть проинтегрировано методом обратной задачи рассея­ния. Солитоны нелинейного уравнения Шрёдинге­ра отличаются от обсуждаемых выше солитонов Кортевега—де Фриса тем, что они соответствуют форме огибающей группы волн. Внешне они на­поминают модулированные радиоволны. Эти солитоны называются групповыми солитонами, а иногда солитонами огибающей. Это название от­ражает сохраняемость при взаимодействии огиба­ющей волнового пакета (аналог штриховой ли­нии, представленной на рис. 3), хотя сами волны под огибающей двигаются со скоростью, отличной от групповой. При этом форма огибающей описывается 

    Рис. 3. Пример группового солитона (штриховая линия)

    зависимостью

    a(x,t)=a0 ch-1()

    где аа - амплитуда, а l— половина размера солитона. Обычно под огибающей солитона находится от 14 до 20 волн, причем средняя волна самая большая. С этим связан хорошо известный факт, что самая вы­сокая волна в группе на воде находится между седь­мой и десятой (девятый вал). Если в группе волн об­разовалось большее количество волн, то произойдет ее распад на несколько групп.

    Нелинейное уравнение Шрёдингера, как и урав­нение Кортевега— де Фриса, также имеет широкую распространенность при описании волн в различ­ных областях физики. Это уравнение было предло­жено в 1926 году выдающимся австрийским физи­ком Э. Шрёдингером для анализа фундаментальных свойств квантовых систем [4] и первоначально ис­пользовано при описании взаимодействия внут­риатомных частиц. Обобщенное или нелинейное уравнение Шрёдингера описывает совокупность явлений в физике волновых процессов. Например, оно используется для описания эффекта самофоку­сировки при воздействии мощного лазерного луча на нелинейную диэлектрическую среду и для опи­сания распространения нелинейных волн в плазме.


    3. Постановка задачи

    3.1.  Описание модели. В настоящее время наблюдается значи­тельно возрастающий интерес к исследованию нелинейных волно­вых процессов в различных областях физики (например, в оптике, физике плазмы, радиофизике, гидродинамике и т.д.). Для изучения волн малой, но конечной амплитуды в дисперсионных средах в каче­стве модельного уравнения часто используют уравнение Кортевега-де Фриза (КдФ):

    ut + иих + bиххх = 0      (3.1)

    Уравнение КдФ было использовано для описания магнитозвуковых волн, распространяющихся строго поперек магнитного поля или под углами, близкими к .

    Основные предположения, которые делаются при выводе уравне­ния: 1) малая, но конечная амплитуда, 2) длина волны велика по сравнению с длиной дисперсии.

    Компенсируя действие нелинейности, дисперсия дает возможность формироваться в дисперсионной среде стационарным волнам конеч­ной амплитуды - уединенным и периодическим. Уединенные волны для уравнения КдФ после работы [8] стали называться солитонами [9]. Периодические волны носят название кноидальных волн. Соот­ветствующие формулы для их описания даны в [4].

    3.2. Постановка дифференциальной задачи. В работе иссле­дуется численное решение задачи Коши для уравнения Кортевега-де Фриза с периодическими условиями по пространству в прямоуголь­нике QT={(t,x):0<t<T, x Î [0,l].

    ut + иих + bиххх = 0           (3.2)

    u(x,t)|x=0=u(x,t)|x=l                       (3.3)

    с начальным условием

    u(x,t)|t=0=u0(x)                     (3.4)


    4. Свойства уравнения Кортевега - де Фриза

    4.1. Краткий обзор результатов по уравнению КдФ. Задача Коши для уравнения КдФ при различных предположениях отно­сительно u0(х) рассматривалась во многих работах [10-17]. Задача о существовании и единственности решения с условиями периодично­сти в качестве краевых условий была решена в работе [10] с помощью метода конечных разностей. Позже, при менее сильных предположе­ниях, существование и единственность были доказана в статье [11] в пространстве L¥(0,T,Hs(R1)), где s>3/2, а в случае периодической задачи - в пространстве L¥(0,T,H¥(C))где С - окружность дли­ны, равной периоду, на русском языке эти результаты представлены в книге [12].

    Случай, когда не предполагается какая-либо гладкость началь­ной функции u0ÎL2(R1), рассмотрен в работе [13]. Там вводит­ся понятие обобщенного решения задачи (3.2),(3.4), устанавливает­ся существование обобщенного решения и(t,х) Î L¥(0,T,L2(R1)) в случае произвольной начальной функции u0 ÎL2(R1); при этом и(t,х) Î L2(0,Т;H-1(-r,r)) для любого r>0, и если для некото­рого a  > 0 (xau02(x)) Î L1(0,+¥) , то

    (4.1)

    Используя обращение линейной части уравнения при помощи фун­даментального решения G(t,x) соответствующего линейного опера­тора , вводится класс корректности задачи (3.2),(1.4) и уста­навливаются теоремы единственности и непрерывной зависимости решений этой задачи от начальных данных. Также исследуются во­просы регулярности обобщенных решений. Одним из основных ре­зультатов является достаточное условие существования непрерыв­ной по Гельдеру при t > 0 производной  в терминах существования моментов для начальной функции, для любых k и l.

    Задача Коши для уравнения КдФ исследовалась также методом обратной задачи рассеяния, предложенном в работе [14]. При по­мощи этого метода были получены результаты о существовании и гладкости решений при достаточно быстро убывающих начальных функциях, причем в [15] установлен, в частности, результат о раз­решимости задачи (3.2),(3.4) в пространстве C¥(О, Т; S(R1)).

    Наиболее полный обзор современных результатов по уравнению КдФ можно найти в [16].


    4.2. Законы сохранения для уравнения КдФ. Как известно, для уравнения КдФ существует бесконечное число законов сохране­ния. В работе [17] приводится строгое доказательство этого факта. В работах [11], [12] различные законы сохранения применялись для до­казательства нелокальных теорем существования решения задачи (3.2),(3.4) из соответствующих пространств.

    Продемонстрируем вывод первых трех законов сохранения для за­дачи Коши на R1 и периодической задачи.

    Для получения первого закона сохранения достаточно проинте­грировать уравнения (3.2) по пространственной переменной. Полу­чим:


    отсюда и следует первый закон сохранения:

    Здесь в качестве a и b выступают +¥ и -¥ для задачи Коши и границы основного периода для периодической задачи. Поэтому второе и третье слагаемые обращаются в 0.

    (4.2)

    Для вывода второго закона сохранения следует умножить уравне­ние (3.2) на 2 u(t,x) и проинтегрировать по пространственной пере­менной. Тогда, используя формулу интегрирования по частям полу­чим:

    но в силу "краевых" условий все слагаемые кроме первого опять сокращаются

    Таким образом второй интегральный закон сохранения имеет вид:

                   (4.3)

    Для вывода третьего закона сохранения нужно умножить наше уравнение (3.2) на (и2 + 2b ихх), таким образом получим:

    После применения несколько раз интегрирования по частям тре­тий и четвертый интегралы сокращаются. Второе и третье слагае­мые исчезают из-за граничных условий. Таким образом из первого интеграла получаем:

    что эквивалентно

    (4.4)

    А это и есть третий закон сохранения для уравнения (3.2). Под физическим смыслом первых двух интегральных законов со­хранения в некоторых моделях можно понимать законы сохранения импульса и энергии, для третьего и последующих законов сохране­ния физический смысл охарактеризовать уже труднее, но с точки зрения математики эти законы дают дополнительную информацию о решении, которая используется потом для доказательств теорем существования и единственности решения, исследования его свойств и вывода априорных оценок.

    5. Разностные схемы для решения уравнения КдФ

    3.1. Обозначения и постановка разностной задачи. В области ={(x,t):0£x£l,0£t£T} обычным образом введем равномерные сетки, где

    Введем линейное пространство Wh сеточных функций, определен­ных на сетке со значениями в узлах сетки yi=yh(xi). Пред­полагается, что выполнены условия периодичности y0=yN. Кроме того, формально полагаем yi+N=yi для i ³ 1.

    Введем скалярное произведение в пространстве Wh

    (5.1)

    Снабдим линейное пространство П/г нормой:


    Поскольку в пространство Wh входят периодические функции, то это скалярное произведение эквивалентно скалярному произведе­нию:

    Будем строить разностные схемы для уравнения (3.2) на сетке с периодическими краевыми условиями. Нам потребуются обозна­чения разностных аппроксимаций. Введем их.

    Используем стандартные обозначения для решения уравнения на очередном (n-м) временном слое, то есть

    Введем обозначения для разностных аппроксимаций производных. Для первой производной по времени:

    Аналогично для первой производной по пространству:

    Теперь введем обозначения для вторых производных:

    Третью пространственную производную будем аппроксимировать следующим образом:

    Также нам потребуется аппроксимация у2, которую мы обозначим буквой Q и введем следующим образом:

    (5.2)

    Для записи уравнения на полу целых слоях будем использовать уравновешенную аппроксимацию, т.е.

    за исключением аппроксимации у2 на полу целом слое. Приведем одну из возможных аппроксимаций у2 на полу целом слое:

    Замечание 2. Стоит отметить, что для 1 выполняется равенство:

    Определение 1. Следуя [19] разностную схему для уравнения КдФ будем называть консервативной, если для нее имеет место сеточ­ный аналог первого интегрального закона сохранения, справедливо­го для дифференциальной задачи.

    Определение 2. Следуя [19] разностную схему для уравнения КдФ будем называть L2-консервативной, если для нее имеет место сеточ­ный аналог второго интегрального закона сохранения, справедливо­го для дифференциальной задачи.

    5.2. Явные разностные схемы (обзор). При построении раз­ностных схем будем ориентироваться на простейшую разностную схему из работы [19] для линеаризованного уравнения КдФ, кото­рое сохраняет свойства самого уравнения КдФ в смысле двух первых законов сохранения.

    (5.3)

    Исследуем теперь схему (5.4) на свойства консервативности. Вы­полнение первого закона сохранения очевидно. Достаточно просто умножить это уравнение скалярно на 1. Тогда второе и третье сла­гаемые схемы (5.4) дадут 0, а от первого останется:

    (5.4)

    Это сеточный аналог первого закона сохранения.

    Для вывода второго закона сохранения умножим скалярно урав­нение (5.3) на 2t у. Приходим к энергетическому тождеству

    (5.5)

    Наличие отрицательного дисбаланса говорит не только о невыпол­нении соответствующего закона сохранения, но и ставит под сомне­ние вопрос вообще об устойчивости схемы в наиболее слабой норме L2().)- В работе [15] показано, что схемы семейства (3.18) являются абсолютно неустойчивыми в норме L2().



    Другим примером явной двухслойной схемы является двух шаговая схема Лакса-Вендрофа [20]. Это схема типа предиктор-корректор:

    В данный момент наиболее популярными схемами для уравнения КдФ считаются трехслойные схемы ввиду их простоты, точности и удобства реализации.

    (5.6)

    Эту же схему можно представить в виде явной формулы

    (5.7)

    Самой простой трехслойной схемой является следующая схема:

    Эта схема была использована при получении первых численных решений КдФ [8]. Эта схема аппроксимирует дифференциальную задачу с порядком О (t2 + h2). Согласно [21], схема является устой­чивой при выполнении условия (при малых Ь):


    Приведем еще несколько схем. Трехслойная явная схема с поряд­ком аппроксимации O(t2 + h4)[20]:

    Третья производная по пространству аппроксимируется на семи­точечном шаблоне, а первая строится по пяти точкам. Согласно [21], эта схема устойчива при выполнении условия (при малых h):

    Легко видеть, что для этой схемы с более высоким порядком ап­проксимации условие устойчивости является более жестким.

    В работе [19] предлагается следующая явная разностная схема с порядком аппроксимации О(t2 + h2) :

    (5.8)

    Так как разностное уравнение (5.8) можно записать в дивергент­ном виде

    (5.9)

    то, скалярно умножив уравнение (5.9) на 1, получим

    следовательно, выполняется соотношение:

    которое можно считать сеточным аналогом первого закона сохране­ния. Таким образом, схема (5.8) является консервативной. В [19] доказано, что схема (5.8) является L2-консервативной и ее решение удовлетворяет сеточному аналогу интегрального закона сохранения

    5.3. Неявные разностные схемы (обзор). В этом параграфе мы рассмотрим неявные разностные схемы для уравнения Кортевега-де Фриза.

    Вариант двухслойной схемы - неявная абсолютно устойчивая схе­ма с порядком аппроксимации О (t2, h4) [21]:

    Решение разностной схемы (3.29) вычисляется с помощью семи диагональной циклической прогонки [22]. Вопрос о консервативности этой схемы не исследовался.

    В работе [15] предлагается неявная трехслойная схема с весами:

    (5.10)

    Разностная схемы (5.10) с периодическими по пространству реше­ниями, консервативна, L2-консервативна при s =1/2 и s =1/4  для ее решения имеют место сеточные аналоги интегральных законов сохранения.


    6. Численное решение

    Численное решение для (3.2), (3.3), (3.4) было проделано с использованием явной схемы

    (5.7)

    Решалась начально-краевая задача на отрезке [0, 2p]. В качестве начальных условий бралась функция

    u0(x)=sin (x).

    Явным образом было получено решение.

    Программа для расчетов была написана на языке Turbo Pascal 7.0. Текст основных частей программы прилагается.

    Расчеты велись на вычислительной машине с процессором AMD-K6-2 300 МГц с технологией 3DNOW!, размер оперативной памяти 32 Мб.



    7. Заключение

     Настоящая работа посвящена исследованию уравнения Кортевега – де Фриза. Проведен обширный литературный обзор по теме исследования. Изучены различные разностные схемы для уравнения КдФ. Выполнен практический счет с использованием явной пяти точечной разносной схемы

    Как показал анализ литературных источников, явные схемы для решения уравнений типа КдФ наиболее применимы. В данной работе также решение было получено с использованием явной схемой.


    8. Литература

    1. Ландсберг Г.С. Элементарный учебник физики. М.: Наука, 1964. Т. 3.

    2.  Фейнман Р., Лейтон Р., Сэндс М. Фейнмановские лекции по физике. М.: Мир, 1965. Вып.4.

    3. Филиппов А. Г Многоликий солитон. М.: Наука, 1986. (Б-чка "Квант"; Вып. 48).

    4. Рубанков В.Н. Солитоны, новое в жизни, науке, тех­нике. М.: Знание, 1983. (Физика; Вып. 12).

    5. Korteweg D.J., de Vries G. On the change form of long waves advancing in a rectangular channel and on new type of long stationary waves.//Phyl.May. 1895. e5. P. 422-443.

    6. Сагдеев Р.З. Коллективные процессы и ударные волны в разре­женной плазме.-В кн.: Вопросы теории плазмы, Вып.4. М.: Атомиз-дат, 1964, с.20-80.

    7. Березин Ю.А., Карпман В.И. К теории нестационарных волн конечной амплитуды в разреженной плазме. // ЖЭТФ, 1964, т.46, вып.5, с. 1880-1890.

    8. Zabusky N.J., Kruskal M.D. Interactions of "solitons"in a collisionless plasma and the reccurence of initial states // Phys.Rev.Lett. 1965. V.15. еб. Р.240-243.

    9. Буллаф Р., Кодри Ф. Солитоны. М.: Мир; 1983

    10. Sjoberg A. On the Korteweg-de Vries equation, existence and uniqueness, Uppsala University, Department of Computers, 1967

    11.  Temam R. Sur un probleme non lineare // J.Math.Pures Anal. 1969, V.48, 2, P. 159-172.

    12.  Лионе Ж.-Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972.

    13. Кружков С.Н. Фаминский А.В. Обобщенные решения для урав­нения Кортевега-де Фриза.// Матем. сборник, 1983, т. 120(162), еЗ, с.396-445

    14..  Gardner C.S., Green J.M., Kruskal M.D., Miura R.M. Method for solving the Korteweg-de Vries equation // Phys.Rev.Lett. 1967. V. 19. P. 1095-1097.

    15.  Шабат А.Б. Об уравнении Кортевега-де Фриза // ДАН СССР, 1973, т.211, еб, с.1310-1313.

    16.  Фаминский А.В. Граничные задачи для уравнения Кортевега-де Фриза и его обобщений: Дисс.... докт. физ.-матем. наук,М:РУДН,2001

    17. Miura R.M., Gardner C.S., Kruscal M.D. Korteweg-de Vries equation and generlization. II. Existence of conservation laws and constants of motion. // J.Math.Phys. 1968. V.9. P. 1204-1209.

    18.  Амосов А.А., Злотник А.А. Разностная схема для уравнений движений газа.

    19. Самарский А.А., Мажукин В.И., Матус П.П., Михайлик И.А. Z/2-консервативные схемы для уравнения Кортевега-де Фриса.// ДАН, 1997, т.357, е4, с.458-461

    20.  Березин Ю.А. Моделирование нелинейных волновых процес­сов. Новосибирск: Наука. 1982.

    21.  Березин Ю.А., О численных решениях уравнения Кортевега-де Вриза.// Численные методы механики сплошной среды. Новоси­бирск, 1973, т.4, е2, с.20-31

    22. Самарский А.А., Николаев Методы решения сеточных уравнений. М: Наука, 1978

    23. Самарский А.А., Гулин А.В. Численные методы. М: Наука, 1989

    24. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М: Наука, 1987

        


    Страницы: 1, 2


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.