МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Курсовая работа: Углеводородный состав прямогонных бензинов

    Единой унифицированной программой исследования нефтей рекомендуется остаток (до момента начала разложения) от разгонки нефти в аппарате АРН-2 перегонять по методу Гроз- НИИ до температуры выкипания 560—580 °С. При этом отбираются фракции 450—500, 500—520, 520—540, 540—560, 560— 5800С. Сущность метода ГрозНИИ заключается в перегонке остатка в глубоковакуумной колбе Мановяиа (рис. 3.14). Отличительной особенностью этой колбы является то, что она представляет собой горизонтальный цилиндр.

    Рис. 3.16. Комбинированные кривые температур кипения:

    1 — нефть типа ромашкннской; 2 — смесь нефти западно-сибирской и украинской (1:1); tп — температура, соответствующая переходу процесса перегонки в аппарате ЛРН-2 на процесс перегонки в колбе Мановяна


    Цилиндрическая форма перегонной колбы, по сравнению с классической сферической, позволяет в два раза снизить гидростатическое давление слоя жидкости и увеличить в 1,7—1,9 раза поверхность зеркала испарения, в 1,4—1,7 раза поверхность нагрева. Установка для глубоковакуумной перегонки нефтяных остатков с использованием колбы Мановяна приведена на рис. 3.15.

    Таким образом, фракционирование нефтей на фракции до 5800С можно проводить сочетанием перегонки в аппарате АРН-2 (ГОСТ 11011—85) с перегонкой в колбе Мановяна. При этом характер кривой ИТК практически не искажается (рис. 3.16).

    6. Методы исследования состава бензиновых фракций

    Так как нефть представляет собой смесь большого числа органических продуктов, исследование ее химического состава— весьма сложная задача. Сравнительно простым составом характеризуются лишь самые легкие - бензиновые фракции нефтей, выкипающие в пределах от начала кипения до 180 — 200 °С. В их состав входят углеводороды и гетероатомные соединения, содержащие от 5 до 10 атомов углерода в молекуле.

    Бензиновые фракции, выделенные из нефтей прямой перегонкой, в зависимости от состава исходной нефти могут содержать в различных соотношениях арены, алканы, циклоалканы, а также некоторые гетероатомные соединения. Углеводородный состав бензиновых фракций некоторых нефтей приведен в табл. 4.1.

    В состав бензиновых фракций, выделенных из продуктов термокаталитической переработки нефтяного сырья, кроме перечисленных групп соединений входят еще алкены, а иногда в незначительных количествах алкины и алкадиены.


    Таблица 4.1. Углеводородный состав бензиновых фракций некоторых нефтей

    Нефть Массовая доля,
    алканов циклоалканов аренов
    Арланская 77 16 7
    Ромашкннская (угленос 69 23 8
    ного горизонта)
    Самотлорская 63 27 10
    Тенгинская 58 25 17
    Газлннская 40 32 28
    Новопортовская 19 53 28

    При изучении химического состава бензиновых фракций ставятся две основные задачи: 1) определение индивидуального компонентного состава; 2) определение группового состава. При определении индивидуального состава в исследуемой фракции идентифицируют все составляющие ее компоненты. Это достаточно сложная задача, но современный уровень развития методов исследования многокомпонентных смесей позволяет успешно ее решить.

    Часто для практических целей знание индивидуального состава не обязательно, а достаточна информация о групповом составе исследуемого образца. При определении группового углеводородного состава компоненты бензиновых фракций делят по типу молекул, т. е. находят содержание алканов, циклоалканов, аренов и алкенов (если последние содержатся в исследуемом образце).

    Для определения индивидуального и группового состава бензиновых фракций используют различные методы анализа, среди которых главное место занимают инструментальные методы.


    7. Индивидуальный углеводородный состав

    При анализе состава бензиновых фракций широко используют газожидкосую хроматографию. Для получения достоверных результатов хроматографического разделения нефтяных фракций необходимо правильно подобрать неподвижную фазу, которая обеспечила бы максимально четкое разделение компонентов, и правильно выбрать режим разделения (размеры колонки, температуру, скорость газа-носителя, объем вводимой для анализа пробы и т. д.).

    На современных хроматографах анализ можно проводить как при постоянной температуре (т. е. температура колонки, детектора н места ввода пробы во время всего анализа остается неизменной), так и при изменяющейся температуре. Если анализируемая смесь имеет широкий интервал температур кипения (например, фракция бензина н. к.— 180 °С), анализ проводят при постепенно повышающейся температуре, причем изменение температуры идет по заданному режиму. Такой метод анализа называют газовой хроматографией с программированием температуры. Скорость подъема температуры может изменяться в широком интервале (от 0,1 до нескольких °С/мин). Использование хроматографии с программированием температуры позволяет получить четкое разделение компонентов при одновременном сокращении времени анализа. Еще больше сократить время анализа и получить качественные хроматограммы позволяет одновременное программирование температуры и скорости газа- носителя.


    Рис. 4.1. Схема анализа фракции н. к. —200 °С

    ОПРЕДЕЛЕНИЕ ИНДИВИДУАЛЬНОГО УГЛЕВОДОРОДНОГО СОСТАВА ФРАКЦИИ ПРЯМОГОННОГО БЕНЗИНА н.к. — 150°С

    К настоящему времени разработано и используется несколько схем хроматографического анализа бензиновых фракций с различными пределами выкипания и разного происхождения. В нашей стране широко используют схему и методику анализа прямогонной бензиновой фракции и. к.— 150 °С, разработанные Ал. А. Петровым с сотрудниками в середине 70-х годов. Эта фракция представляет собой очень сложную смесь, в нее входят алканы нормального и изостроения, циклоалканы и арены (гомологи бензола) — всего около 200 различных углеводородов. Для анализа из исходной нефти отбирают фракцию н. к. — 200 °С, затем с помощью жидкостной адсорбционной хроматографии на силикагеле (марки АСК) отделяют алкано- циклоалкановые углеводороды от аренов. Индивидуальный состав последних определяют методом газожидкостной хроматографии на капиллярной колонке. Алкано-циклоалкановую часть фракции на ректификационной колонке эффективностью 25— 50 теоретических тарелок разгоняют на фракции н. к.— 125 °С и 125—150 °С, которые затем раздельно анализируют на капиллярной колонке. Схема анализа приведена на рнс. 4.1.

    Анализ алкано-циклоалкановых углеводородов фракции н. к.— 125 °С

    Определение индивидуального состава этой фракции проводят методом газожидкостной хроматографии на капиллярной колонке. Для анализа используют хроматограф с ионизационно- пламенным детектором. В качестве газа-носителя можно использовать азот, гелий, аргон, водород.

    Рис. 4-2. Хрома гографнчсскнй пик

    Металлическая колонка (медная, стальная и т. п.) имеет длину 50 или 100 м и внутренний диаметр 0,25—0,3 мм. На внутреннюю поверхность капилляра наносят неподвижную жидкую фазу —сквалан (2,6,10,15,19,23- гексаметилтетракозан). Сквалан наносят на внутреннюю поверхность капилляра в виде 20 %-го раствора в ацетоне с помощью специального устройства — наполнителя для капиллярных колонок. Затем колонку помещают в термостат и продувают газом-носителем при температуре, близкой к максимальной температуре хроматографического опыта.

    Для проведения анализа данной фракции бензина необходимо, чтобы капиллярная колонка обладала достаточной эффективностью, Эффективность колонки определяется числом теоретических тарелок (ЧТТ), которое определяют по какому- либо углеводороду, например н-гекеану, при 70 °С и скорости газа-носителя 1—2 с.м3/мин. Определение числа теоретических тарелок (ЧТТ) проводят по формуле:

    где t время удержания компонента, мм или см; b -ширина хромато-

    графического пика па половине его высоты, мм п.пт см (рис. 4 2).

    Для работы пригодны колонки, ЧТТ которых находится в пределах 50—70 тыс., что указывает на высокую эффективность приготовленной капиллярной колонки и ее пригодность для анализа такой многокомпонентной смеси, как фракция прямогонного бензина.

    Получение калибровочных смесей алканов и цнклоалканов. Для качественной расшифровки хроматограмм при анализе бензина необходим набор индивидуальных углеводородов или их смесей. Удобным методом получения смесей известного состава является изомеризация углеводородов (к-октана, изооктана, н-нонана). Изомеризацию проводят и присутствии бромида или хлорида алюминия. Получаемые так называемые калибровочные смеси являются вторичными эталонами, состав которых определен с помощью специально синтезированных углеводородов. Для получения калибровочной смеси в колбу вводят 5—10 мл углеводорода, добавляют кусочек свежего бромида (хлорида) алюминия (~10% по массе) и оставляют на 20—24 ч при комнатной температуре. Для изомеризации изоок- тана достаточно 6—8 ч. Для прекращения реакции необходимо слить верхний бесцветный слой нзомеризата, нейтрализовать его 40 %-м раствором КОН, отделить углеводородный слой, промыть ого водой, высушить и перегнать. Изомеризация протекает по ступенчатому механизму:


    На начальных стадиях изомеризации в основном происходит накопление изомеров того же типа замещения или отличающихся на один третичный атом углерода, так как реакции, идущие с изменением числа третичных атомов углерода, протекают значительно медленнее. Между моно- и дизамещенными изомерами, независимо от степени превращения исходного углеводорода, устанавливаются соотношения, близкие к равновесным. Это позволяет, используя эталонные углеводороды, расшифровать состав калибровочных смесей алканов. Вследствие протекания вторичных процессов (алкилирования—деалкили- рования) в составе нзомеризатов обнаруживаются углеводороды С4—С7 и С9.

    Изомеризация цнклоалканов в присутствии бромида алюминия протекает гораздо быстрее (5—10 мин).

    При изомеризации н-октана в изомернзате преобладают монозамещенные изомеры, при изомеризации 2-метилгептана наряду с монозамещенными изомерами образуется много дизамещенных, а при изомеризации изо- октана (2,2,4-триметилпентана) получаются как три-, так и ди- замещенные изомеры. В табл. 4.2 приведены углеводороды, найденные в нзомеризатах алканов, на рис. 4.3 - хроматограмма изомеризата изооктана.


    Таблица 4.2. Углеводороды, определенные хроматографически в изомеризатах алканов, и порядок их выхода

    Рнс. 4,3. Хроматограмма изомеризата изооктана

    Неподвижная фаза — сквалан. Отнесение пиков см. в табл. 4.2

    Выполнение анализа. В состав этой фракции входят углеводороды до C8 включительно. Хроматографичсский анализ этой фракции проводится при нескольких температурах: 30, 50 и 70 "С. Проводя анализ при разных температурах, используют известный эффект изменения относительного времени удерживания ряда углеводородов при изменении температуры колонки. Различия в изменении времени удерживания для изомерных углеводородов используют для подтверждения их нахождения в данном хроматографическом пике. Так, при анализе бензиновой фракции н. к.— 125 °С (температура колонки 30 °С) метил- циклогексан, 1,1,3-триметилциклопентан и 2,2-диметилгексан выходят одним хроматографическнм пиком, а при 70 °С эти углеводороды разделяются; 1,2-транс-диметилциклогексан, н-октан и 1,2,3,4-транс, транс,транс-тетраметилциклопентан при 50°С выходят совместно, а при 70 °С — разделяются. Кроме того, с увеличением температуры анализа время выхода циклоалканов увеличивается относительно эталонного ряда алканов,- Основной рабочей температурой анализа является температура 70°С. При этой температуре снимается основная хроматограмма (рис. 4.4). Поскольку изменения температуры влияют па порядок выхода углеводородов, необходимо поддерживать постоянной температур} анализа.

    В табл. 4.3 приведены значения времени удерживания компонентов при различных температурах хроматографического анализа.

    Для идентификации пиков на полученной хроматограмме в хроматограф вводят индивидуальные углеводороды (эталоны, например, н-гексан, н-гептан, н-октан) при тех же условиях, при которых проводился опыт. Если время удерживания эталонного углеводорода совпадает с таковым для какого то пика анализируемой фракции, то этот пик идентифицируется.




    Приняв время удерживания к-гексана за единицу, рассчитывают значения времени удерживания для всех пиков па хроматограмме п, сравнивая их с данными табл. 4.3, проводят идентификацию пиков.

    Количественный состав анализируемой смеси определяют, исходя из того, что содержание компонентов в смеси пропорционально параметрам их пиков (высоте, площади). Имеется несколько методов расчета хроматограмм с целью определения количественного состава образцов.

    Метод внутренней нормализации. По этому методу процентное содержание какого-либо компонента в смеси определяют как отношение приведенной площади его пика к сумме приведенных площадей всех пиков:

    где S/i— приведенная площадь пика компонента, т.е. произведение площади пика S, на поправочный коэффициент К, учитываются чувствительность детсктора по отношению к данному компоненту S/i=SiKi= htbiKi площадь пика определяют как произнедепие его высоты на ширину на половине высоты пика: Si = hibt.

    Метод абсолютной калибровки. В соответствии с этим методом процентное содержание компонента в смеси можно найти с помощью калибровочного графика в координатах: площадь (высота) пика — процентное содержание компонента в смеси. Калибровочные графики строят на основании данных хроматографического анализа искусственных смесей, в которых содержание каждого компонента известно. По хроматограммам определяют параметры каждого пика и строят графики.

    Метод внутреннего стандарта. В анализируемую смесь вводят стандартное вещество, пик которого на хроматограмме должен четко отделяться от других пиков.


    Концентрацию любого компонента смеси, %, рассчитывают по формуле:

    где S/i — приведенная площадь пика компонента; S/ст— приведенная площадь, пика стандартного вещества; Р— отношение массы стандартного вещества к массе анализируемого образца.

    Анализ фракции 125—150 °С

    Состав этой фракции более сложен, чем фракции н. к. — 125оС, так как в нее входят почти все углеводороды, содержащие 9 атомов углерода. Поэтому данная методика ограничена определением углеводородов, содержащихся в нефтях в относительно больших количествах (сумма их составляет 95—97 % всей фракции).

    Исследования бензиновых фракций, выполненные в лаборатории А.А. Петрова, показали, что в нефтях присутствуют в больших количествах термодинамически устойчивые изомеры и что количественное распределение углеводородов подчинено следующим закономерностям:

    среди алканов преобладают нормальные и малоразветвленные изомеры (моно- и дизамещенные алканы); тризамещенные и изомеры с третичным углеродным атомом находятся в незначительных количествах. Распределение изомерных алканов с одинаковым числом заместителей соответствует равновесным концентрациям;

    геометрические изомеры алкилциклоалканов находятся в равновесных соотношениях, т.е. преобладают наиболее термодинамически устойчивые легкокипящие изомеры.

    Этн закономерности и экспериментальные данные по равновесным соотношениям пространственных изомеров циклоалка- нов положены в основу методики определения углеводородного состава бензинов прямой гонки, выкипающих в пределах 125— 150 "С.

    Отогнанную на ректификационной колонке фракцию анализируют при температурах 80 и 1060С на той же колонке с неподвижной жидкой фазой — сквалан, на которой анализировалась первая фракция. При указанных температурах снимают хроматограммы фракции бензина 125—150 °С и изомеризата н-нонана.

    Изомеризат н-нонана получают по методике, описанной выше. Для определения области элюирования алканов С9 на хроматограмме изомеризата в него добавляют н-октан и н-нонан. Пользуясь приведенной в методике, хроматограммой (рис. 4.5) и данными табл. 4.4, идентифицируют пики алканов на хроматограмме изомеризата. В алкано-цнклоалкановую часть бензиновой фракции также добавляют н-октан и н-нонан, снимают хроматограмму и, сравнивая полученную хромато- грамму с хроматограммой изомеризата, полученной в тех же условиях, идентифицируют пики алканов. Для определения пиков циклоалканов используют данные о порядке выхода углеводородов, приведенные в табл. 4.5 и 4.6.

    Как видно из данных табл. 4.5 и 4.6, многие углеводороды в такой


    сложной смеси выходят совместно, общим хроматографическим пиком, и часто приходится ограничиваться их суммарным определением. Однако содержание некоторых неразделяющихся компонентов можно рассчитать, исходя из равновесных соотношений их пространственных изомеров. Например, изомерные 1,2,3,4-тетраметилциклопентаны в равновесной при 327 °С смеси находятся в соотношении, % :

    транс,транс,транс- 53,7цис,цис,транс-5,8

    транс,цис,транс-12,0цис,транс,цис-3,4

    транс,транс цис-24,8цис цис,цис-0,3



    Зная содержание 1,2,3,4-транс,транс,транс-тетраметилцикло- пентана, который выходит отдельным пиком, можно рассчитать содержание остальных его изомеров, выходящих совместно с другими углеводородами. Присутствие в нефтях цис,транс,цис- и цис,цис,цис -изомеров из-за их термодинамической неустойчивости мало вероятно, и их количеством можно пренебречь.

    Арены из фракции н. к. — 200 °С выделяют методом жидкостной адсорбционной хроматографии на силикагеле марки

    Таблица 4.7. Относительное время удерживания аренов С6—С10 на разных неподвижных фазах

    АСМ. Активность силикагеля, определяемая по бензолу, должна составлять 10—12 ед. Разделение проводят вытеснительным методом, применяя в качестве десорбента этиловый спирт.

    Анализ аренов проводят на капиллярной колонке указанного выше размера, скорость газа-носителя 3—3,5 см3/мин. При определении состава ароматических углеводородов широкой фракции н. к. — 200 °С в качестве неподвижных жидких фаз используют полярные вещества, например полиэтиленгликоль (ПЭГ). дибутилтетрахлорфталат (ДБТХФ), трикрезилфосфат и др. В табл. 4.7 приведены значения относительного времени удерживания аренов на двух неподвижных жидких фазах. Идентификацию хроматографических пиков проводят с помощью индивидуальных аренов. Температура хроматографической колонки во время анализа 100 °С.


    ЗАКЛЮЧЕНИЕ

    Углеводородный состав прямогонных бензинов зависит от возраста нефти, от географического и геологического происхождения нефти, а так же от физических и химических процессов, проходящих при ее зарождении и формировании.


    ЛИТЕРАТУРА

    1.  Орловски М. и др. — Хим. и технол. топлив и масел, 1979, № 6, с. 6—8.

    2.  Самойлова Н.Н. и др. — Хим. и технол. топлив и масел, 1977, № 7, с. 8—11.

    3.  Левинтер М.Е. и др. — Хим. и технол. топлив и масел, 1971, № 1, с. 16—20.

    4.  Магарил Р.3. Теоретические основы химических процессов переработки нефти. М., Химия, 1976. 312 с.

    5.  Левинтер М.Е. и др. Реконструкция установки каталитического крекинга с пылевидным катализатором типа 1-А. М., ЦНИИТЭнефтехим, 1970. 68 с.

    6.  Мелик-Ахназаров Т.X. и др. — Хим. и технол. топлив и масел, 1977, № 2, с. 7—10.

    7.  Макарьев С.В. и др. — В кн.: Производство высокооктановых бензинов. Труды Гроз НИИ. Грозный, 1976, вып. 30, с. 72—76; Нефтепереработка и нефтехимия, 1978, № 11, с. 18—20.

    8.  Жоров Ю.М. Расчеты и исследования химических процессов нефтепереработки. М., Химия, 1973. 214 с.

    9.  Эрих В.Н., Расина М.Г., Рудин М.Г. Химия и технология нефти и газа. 2-е изд. М., Химия, 1977. 424 с.

    10.  Агафонов А.В. и др. — Нефтепереработка и нефтехимия, № 4, с. 24—26.

    11.  Станчева 3.С. и др. — Нефтепереработка и нефтехимия, 1976, № 6, с. 1—3.

    12.  Стехун А.И. и др. — Хим. и технол. топлив и масел, 1977, № 2, с. 10—14.

    13.  Журавлева Н.Т. — Нефтепереработка и нефтехимия, 1977, № 2, с. 5—6.

    14.  Бурсиан Н.Р. и др. — Хим. и технол. топлив и масел, 1975, № 4, с. 14—16.

    15.  Иверсон О., Шмерлинг Л. Новейшие достижения нефтепереработки и нефтехимии. М., Гостоптехиздат, 1960. Т. I. 312 с.

    16.  Полякова А. Н. и др. — Нефтепереработка и нефтехимия, № 3, с. 7—9.

    17.  Лесохина Г.Ф., Мухина Т.Н., Ходаковская В.А. Состав и переработка жидких продуктов пиролиза на отечественных установках. М. ЦНИИТЭнефтехим, 1977. 88 с.

    18.  Ancillott F. е. а. — J. Catal, 1977, v. 46, p. 49—57.

    19.  Печчи Д., Флорис Т. — Переработка углеводородов, 1977, № 12, с. 31—35.

    20.  Пигузова Л.И. Высококремнеземные цеолиты и их применение в нефтепереработке и нефтехимии. М., Химия, 1974. 172 с.


    Страницы: 1, 2, 3, 4


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.