МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Курсовая работа: Электромагнитное загрязнение окружающей среды от передающих радиотехнических объектов на территории г. Красноярска

    Векторный слой – это совокупность простых геометрических объектов (точка, дуга, полигон). Другими словами, векторный слой – это пространственные данные, которые представляют те или иные объекты на местности. Например, как точечные объекты могут быть показаны населенные пункты, наблюдательные посты, места взятия проб грунта, атмосферного воздуха и т.д. Линейными объектами традиционно являются дороги, реки, административные границы и др. Такими объектами как полигоны представлены озера, квартальная застройка в городе, площадь и форма скверов и парков.

    Каждому объекту векторного слоя присваивается индивидуальный пользовательский идентификатор для привязки к базе данных. Это обеспечивает привязку атрибутивной информации из базы данных к местности. Таким образом, основная идея связи пространственных данных с атрибутивными заключается в том, что пространственный объект на карте и содержащий информацию о нем объект базы данных имеют один и тот же идентификатор, который и служит связующим звеном [14].

    Каждому тематическому слою ставят в соответствие одну или несколько таблиц, содержащих характеристики объектов слоя. Например, точечному слою "города" присоединяется таблица, где присутствует поле, в котором хранится идентификатор каждого объекта (города) и тогда с одним объектом на карте сопоставляется определенная одна запись – строка в таблице (название города, численность населения и т.д.), содержащей в поле идентификатора то же значение, что и идентификатор пространственного объекта на карте. Таким образом, объекту на карте присваивается необходимая атрибутивная информация, содержащаяся в группе записей, таблице и любом другом наборе данных.

    Процесс создания тематических карт можно разделить на этапы.

    Первый этап – это оцифровка существующих бумажных тематических карт или ввод тематической информации в ЭВМ. Для создания большинства тематических слоев исходным материалом для оцифровки служит тематический слой данных. На данной стадии происходит сопоставление спецификаций объектов с указанием необходимых атрибутивных данных в соответствии с тематическим заданием. Важной особенностью этого этапа является указание реперных точек для последующего пересчета векторного изображения из координат устройства ввода в систему координат, применяемую в текущей реализации электронной карты [15].

    Каркасом для укладки тематического материала служит географическая основа и элементы местности, которые однозначно и сравнительно точно отображают на картах: гидрография, рельеф, болота, леса, населенные пункты и др. Приоритеты неподвижности сохраняются за гидрографией, автомобильными и железными дорогами, населенными пунктами. Редактируется, меняется именно тематическое содержание относительно общегеографического, а не наоборот. Иначе качество пространственной привязки тематических данных будет значительно ниже общегеографических [16,17].

    Когда нет бумажной основы с тематическими данными, возникает задача восстановления непрерывных полей значений по дискретным данным, обладающим пространственной привязкой. Значения координат X и Y могут быть получены непосредственно с помощью объектов графического слоя, если мы отмечаем точку на векторном слое и присваиваем ей соответствующий идентификатор, автоматически получая ее координаты. В этом случае дискретные значения находятся в ГИС в виде векторного слоя. Координаты так же могут быть представлены в виде обычных баз данных, либо получены в результате расчетов.

    На этом этапе необходимо построить заданную точками цифровую модель поверхности.

    После создания векторного слоя с пространственной информацией по интересующей теме, идентификации его объектов и присоединении определенной атрибутивной информации из базы данных наступает этап визуализации и тематической раскраски. Здесь происходит выделение объектов слоя, создание так называемой картографической композиции, куда входят слои цифровой карты, правила и порядок их отображения, способы обрисовки объектов, библиотека условных знаков, тематические таблицы и др. [18].

    Большинство широко распространенных инструментальных ГИС обладают широкими возможностями для тематической обработки карт и их визуализации. Среди них условное выделение цветовыми диапазонами, размерными символами, круговыми и столбчатыми диаграммами, плотностью точек и индивидуальных настроек. Для наиболее полного решения поставленной задачи имеется большое число символов для точечных объектов, стилей линей для линейных и штриховок, заливок – для полигонов.

    Но для того, чтобы геоинформационная карта представляла собою модель реального мира, а не только систему накопления и хранения географических данных [19], необходимо выявить и проанализировать взаимосвязи и взаимозависимости между ее слоями. Это делается при помощи методов математической статистики, которые позволяют по выборкам, полученным с карт и снимков, определять средние величины и вариации, рассчитывать параметры распределения и показатели корреляции, выполнять многомерный факторный, компонентный и дисперсионный анализ и т. п. - словом, использовать весь арсенал математической статистики [20].

     

    2.2 Методы расчетного прогнозирования уровней ЭМИ РЧ

    Определение уровней ЭМП производится с целью прогнозирования электромагнитной обстановки в местах размещения ПРТО. На основе данных технических параметров ПРТО: рабочая частота, мощность излучения, тип антенны, вид модуляции, место и условия расположения на территории города, - рассчитываются распределения ЭМП вокруг радиоисточников. Расчеты выполнялись, используя методические указания (МУК 4.3.1677-03) [21]. В данной работе расчеты проводились при помощи "Программного комплекса анализа электромагнитной обстановки".


    3. Формирование электромагнитного загрязнения в условиях городской среды

     

    3.1 Анализ ПРТО г. Красноярска

    На первом этапе исследования были изучены стационарные ПРТО. Была создана база данных, содержащая технические характеристики источников ЭМИ РЧ: рабочая частота, мощность излучения, тип антенны, вид модуляции, тип зданий, на которых размещались антенны, высоты размещения антенн, год ввода ПРТО в эксплуатацию. База данных представлена в табличном процессоре Ex и в программе Microsoft Access.

    Информация об источниках ЭМИ РЧ за 2005 г, взятая из базы данных, представлена в виде диаграммы 1.

    Проведенные исследования ЭМП радиочастотного диапазона (30кГц-300ГГц) г. Красноярска показали, что наибольший вклад в формирование электромагнитной нагрузки (ЭМН) селитебных зон города – 82,81% – вносит сотовая связь.

    С целью пространственного распределения источников излучения ЭМП были построены тематические слои карты г. Красноярска за 2003 г. и 2005 г., на которых отмечены места установки ПРТО (использовались данные Роспотребнадзора по Красноярскому краю и ФГУЗ "Центр гигиены и эпидемиологии в Красноярском крае"). Вид электронной карты приведен на рис. 1. на примере 2005 г.

    Рис. 1. Карта г. Красноярска с нанесенными на ней источниками ЭМИ РЧ за 2005 г.

    Наибольшее скопление источников ЭМИ РЧ как за 2003 г., так и за 2005 г. наблюдается в Октябрьском, Железнодорожном и Центральном районах, наименьшее – в Ленинском районе.

     

    3.2 Определение удельной мощности ПРТО г. Красноярска

    Представлялось важным провести расчет удельной мощности ЭМИ ПРТО (мощности ЭМИ ПРТО на единицу площади) в каждом районе города (рис. 2.), который позволил выделить приоритетные районы.


    Рис. 2. Карта районов г. Красноярска. 1 – Октябрьский, 2 – Железнодорожный, 3 – Центральный, 4 – Советский, 5 – Свердловский, 6 – Кировский, 7 - Ленинский

    Данные для расчета удельной мощности ЭМИ ПРТО (мощности ПРТО на единицу площади) в каждом районе города за последние несколько лет представлены в табл. 1.

    Таблица 1. Величина удельной мощности ЭМИ ПРТО, рассчитанная для районов г. Красноярска

    Название района

    Площадь км2

    Мощность от источников ЭМИ РЧ, Вт

    Удельная мощность, Вт/ км2

    2003 2004 2005 2003 2004 2005
    1. Октябрьский 33.29 439885.81 483874.39 571851.55 13213.75 14535.13 17177.88
    2. Железнодорожный 11 3325.31 3657.84 4322.903 302.3 332.531 392.9912
    3. Центральный 13.41 7622.01 8384.211 9908.613 568.38 625.2208 738.8973
    4. Советский 56.42 5698.28 6268.108 7407.764 100.99 111.0973 131.2968
    5. Свердловский 51.53 4917.09 5408.799 6392.217 95.42 104.9641 124.0485
    6. Кировский 9.81 1085.26 1193.786 1410.838 110.63 121.6907 143.8163
    7. Ленинский 38.32 2161.52 2377.672 2809.976 56.41 62.04781 73.32923

    Из таблицы следует, что наибольшая удельная мощность установлена в Октябрьском районе города, где расположен наиболее мощный ПРТО – антенное поле Красноярского краевого телерадиопередающего центра по ул. Попова, на втором месте - Центральный район. Наименьшая удельная мощность наблюдается в Свердловском районе. При изучении интенсивности ЭМИ были рассчитаны значения поля от каждого ПРТО с помощью "Программного комплекса анализа электромагнитной обстановки". Результат одного из расчетов представлен на рис. 3.

    Страницы: 1, 2, 3


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.