МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Биологическая роль витаминов, липидов, процессов брожения

    Маслянокислое брожение в общем виде описывается уравнением

    C6H12О6->СН3*CН2*СООН+2С02+2Н2


    глюкоза масляная кислота. При этом брожении накапливаются различные побочные продукты. Наряду с масляной кислотой, углекислым газом и водородом образуются этиловый спирт, молочная и уксусная кислоты. Некоторые маслянокислые бактерии, кроме того, образуют ацетон, бутанол и изопропиловый спирт.

    Брожение начинается с процесса фосфорилирования глюкозы и далее идет по гликолитическому пути до стадии образования пировиноградной кислоты. Затем образуется уксусная кислота, которая активируется ферментом. После чего при конденсации (соединении) из двууглеродного соединения получается четырехуглеродная масляная кислота. Таким образом, при маслянокислом брожении происходит не только разложение веществ, но и синтез. По данным В. Н. Шапошникова, в маслянокислом брожении различаются две фазы. В первой параллельно с увеличением биомассы накапливается уксусная кислота, а масляная кислота образуется преимущественно во второй фазе, когда синтез веществ тела замедляется.

    Маслянокислое брожение происходит в природных условиях в гигантских масштабах: на дне болот, в заболоченных почвах, илах и всех тех местах, куда ограничен доступ кислорода. Благодаря деятельности маслянокислых бактерий разлагаются огромные количества органического вещества. Спиртовое, гомоферментативное молочнокислое и маслянокислое брожения являются основными типами брожений. Все другие виды брожений представляют собой комбинацию этих трех типов.

    Итак, три основных типа брожения органически связаны между собой — начальные пути разложения углеводов у них одинаковы. Процессы дыхания и брожения являются основными источниками энергии, необходимыми микроорганизмам для нормальной жизнедеятельности, осуществления процессов синтеза важнейших органических соединений.


    4. Физико-химические свойства белков. Уровни организации белковых молекул

    Полимеры. %0%от сухого вещества клетки (всегда С, Н, О2, азот, почти всегда сера).

    Большая молярная масса. Структурная единица-аминокислота. Белки-полипептиды. Каждая белковая молекула характеризуется определенной последовательностью аминокислот, которая определяется структурой гена, кодирующего данный белок.

    Боагодаря наличию амино- и карбоксильных групп белкиобладают амфотерными свойствами. Для каждого белка существует значение рН, при котором суммарный электрический заряд=0 –изоэлектрическая точка (значение рН определяется числом его моногенных групп и величиной константы ионизации). рН примерно=5, 5

    Гидратация-связывание диполей воды с ионами и полярными группами аминокислот.

    Денатурация-потеря наитивных свойств белка из за нарушения химических связей.

    1. Простые белки:

    -протамины и гистоны-в ядрах сперматозоидов у рыб и птиц (повышенное содержание АК, особенно аргенин)

    -альбумины – животные и растительные ткани, белок яиц, сыворотка крови, молоко, семена растений.

    -глобулины – глобулярные белки, растворимы в слабых растворах нейтральных солей, разбавленных в кислотах и щелочах. Обуславливают буферную емкость цитоплазмы, плазмы крови и иммунные свойства организма (не растворим в воде)

    -глютеины, проламины – семена злаков, зеленые части растений (растворяются в разбавленных растворах щелочей) , высокое содержание глутаминовой кислоты и наличие лизина.

    -протеноиды – белки опорных клеток, фибриллярный коллаген, кератин.

    2. Сложные белки:

    -хромопротеины – содержат окрашенные простатические группы:

    А) гемопротеины (содержатжелезо) -цитохромы, некоторые ферменты (каталаза, пероксидаза) , гемоглобин, миоглобин

    Б) дыхательные пигменты крови-гемеритрины

    В) флавопротеиды – переночсики электронов, важная роль в ОВ реакциях.

    -гликопротеины – почти во всех тканях, в жидкостях животных. Содержат обычный набор АК с преобладанием серина и треонина.

    Муцины-секреты слизистых желез

    Мукоиды-входит в состав опорных тканей

    Многие белки плазмы крови, групповые свойства крови, некотоые ферменты и гормоны.

    -липопротеины – комплекс белков и липидов (биологическая мембрана)

    -фосфопротеины – входи фосфорная группа, присоединяется к АК-остаткам. Обычно к ферментам через остаток серина и треонина.

    -металлопротеины – ферментативное дыхание (в составе микроэлемнов) , в гормонах

    -нуклеопротеины – комплексы НК с белками. Состоит из основания и углеродного компонента:сахара, рибозы иди дизоксирибозы.

    Функции:

    1. каталитическая-катализируют протекание химических реакций.

    2. защитная – основную функцию защиты выполняет иммунная система, которая обеспечивает синтез белков-антител.

    3. структурная-основное вещество хрящей, костей, кожи.

    4. регуляторная-многие гормоны-белковой природы

    5. поддержание коллоидно-осмотического давления и кислотно-щелочного равновесия

    6. гомеостаз

    7. энергетическая (АТФ)

    8. транспотр-гемоглобин

    Уровни организации:

    Первичная структура-линейная последовательность АК-остатков в полипептидной цепи.

    Вторичная структура-пространственная структура, образующаяся в результате укладки полипептидной цепи определенным образом:

    α-спираль –водородные связи между NH-на одном витке и СО-на другом.

    β-спираль-водородные связи между параллельными слоями

    Хотя эти связи не очень прочные, их много→прочная связь

    Третичная структура-трухмерная структура, образуется за счет взаимодействия между радикалами АК, которые могут располагаться на значительном расстоянии друг от друга в полипептидной цепи. Гидрофобные радикалы внутри глобулы, гидрофильные-на поверхности (определяют растворимость в воде)

    Четвертичная структура-характерна для сложных белков, состоит из 2 и более полипептидных цепей, не связанных ковалентными связями, а также для белков, содержащих небелковые компоненты. Под 4 структурой понимается пространственное расположение этих компонентов.


    5. Способы очистки белков и определение кинетики ферментативной реакции

    Для подробного исследования физико-химических и биологических свойств белков, а также для изучения их химического состава и структуры непременным условием является получение белков из природных источников в химически чистом, гомогенном состоянии. Последовательность операций по выделению белков обычно состоит в следующем: измельчение биологического материала (гомогенизация) ; извлечение белков, точнее, перевод белков в растворенное состояние (экстракция) ; выделение исследуемого белка из смеси других белков, т. е. очистка и получение индивидуального белка.

    Белковые вещества весьма чувствительны к повышению температуры и действию многих химических реагентов (органические растворители, кислоты, щелочи). Поэтому обычные методы органической химии, применяемые для выделения того или иного вещества из смеси (нагревание, перегонка, возгонка, кристаллизация и др.), в данном случае неприемлемы. Белки в этих условиях подвергаются денатурации, т. е. теряют некоторые существенные природные (нативные) свойства, в частности растворимость, биологическую активность. Разработаны эффективные методы выделения белков в «мягких» условиях, при низкой температуре (не выше 4°С), с применением щадящих нативную структуру химических реагентов.

    Перед выделением белков из биологических объектов (органы и ткани животных, микроорганизмы, растения) исследуемый материал тщательно измельчают до гомогенного состояния, т. е. подвергают дезинтеграции вплоть до разрушения клеточной структуры.

    Успешно применяется также метод попеременного замораживания и оттаивания ткани, в основе действия которого лежит разрушение клеточной оболочки, вызванное кристаллами льда. Для дезинтеграции тканей используют также ультразвук, пресс-методы (замороженный биоматериал пропускают через мельчайшие отверстия стального пресса под высоким давлением) и метод «азотной бомбы», при котором клетки (в частности, микробные) сначала насыщают азотом под высоким давлением, затем резко сбрасывают давление – выделяющийся газообразный азот как бы «взрывает» клетки.

    Современные методы измельчения тканей обычно сочетают с одновременной экстракцией белков из гомогенатов тканей. Большинство белков тканей хорошо растворимо в 8–10% растворах солей. При экстракции белков широко применяют различные буферные смеси с определенными значениями рН среды, органические растворители, а также неионные детергенты – вещества, разрушающие гидрофобные взаимодействия между белками и липидами и между белковыми молекулами.

    Из органических соединений, помимо давно применяемых водных растворов глицерина, широко используют слабые растворы сахарозы. На растворимость белков при экстракции большое влияние оказывает рН среды, поэтому в белковой химии применяют фосфатные, цитратные, боратные буферные смеси со значениями рН от кислых до слабощелочных, которые способствуют как растворению, так и стабилизации белков.

    Почти все органические растворители разрывают белок-липидные связи, способствуя лучшей экстракции белков.

    Для получения из биологического материала белков в чистом, гомогенном, состоянии применяют различные детергенты, способствующие расщеплению белок-липидных комплексов и разрыву белок-белковых связей Следует иметь в виду, что детергенты, вызывая разрыв белок-белковых связей, разрушают олигомерную (четвертичную) структуру белков.

    После достижения полной экстракции белков, т. е. перевода белков в растворенное состояние, приступают к разделению – фракционированию смеси белков на индивидуальные белки. Для этого применяют разнообразные методы: высаливание, тепловую денатурацию, осаждение органическими растворителями, хроматографию, электрофорез, распределение в двухфазных системах, кристаллизацию и др.

    Растворение белков в воде связано с гидратацией каждой молекулы, что приводит к образованию вокруг белковой глобулы водных (гидратных) оболочек, состоящих из ориентированных в определенной форме в пространстве молекул воды. Растворы белков отличаются крайней неустойчивостью, и под действием разнообразных факторов, нарушающих гидратацию, белки легко выпадают в осадок. Поэтому при добавлении к раствору белка любых водоотнимающих средств (спирт, ацетон, концентрированные растворы нейтральных солей щелочных металлов) , а также под влиянием физических факторов (нагревание, облучение и др. ) наблюдаются дегидратация молекул белка и их выпадение в осадок.

    Высаливание. При добавлении растворов солей щелочных и щелочноземельных металлов происходит осаждение белков из раствора. Обычно белок не теряет способности растворяться вновь в воде после удаления солей методами диализа или гельхроматографии. Высаливанием белков обычно пользуются в клинической практике при анализе белков сыворотки крови и других биологических жидкостей, а также в препаративной энзимологии для предварительного осаждения и удаления балластных белков или выделения исследуемого фермента. Различные белки высаливаются из растворов при разных концентрациях нейтральных растворов сульфата аммония. Поэтому метод нашел широкое применение в клинике для разделения глобулинов (выпадают в осадок при 50% насыщении) и альбуминов (выпадают при 100% насыщении).

    На величину высаливания белков оказывают влияние не только природа и концентрация соли, но и рН среды и температура.

    В последнее время наибольшее распространение получили хроматографические и электрофоретические методы разделения белков.

    Хроматография. Принцип хроматографии, разработанный в 1903 г. русским ученым М. С. Цветом, основан на способности пигментов (или любых других окрашенных и неокрашенных веществ) специфически адсорбироваться на адсорбенте, заключенном в колонке.

    В результате происходит разделение анализируемых веществ и их концентрирование в строго определенном слое адсорбента. Затем через колонку пропускают подходящие элюенты, которые ослабляют силы адсорбции и выносят с током раствора индивидуальные вещества. Последние последовательно собирают в коллекторе фракций (принцип сорбции-десорбции).

    Чрезвычайно эффективным средством фракционирования белков из смеси оказалась колоночная хроматография с гидроксилапатитом, различными ионообменными смолами и производными целллюлозы в качестве носителей. При выделении и очистке белков используют четыре основных типа хроматографии: адсорбционную, распределительную, ионообменную и аффинную (хроматография по сродству) – в соответствии с разными физическими и химическими механизмами, лежащими в основе каждого из них. Хроматография широко применяется не только для выделения белков, но и для разделения множества других органических и неорганических веществ, входящих в состав живых организмов.

    Адсорбционная хроматография. Разделение компонентов смеси (образца) основано на их различной сорбируемости на твердом адсорбенте. В качестве адсорбентов используют активированный древесный уголь, гель фосфата кальция, оксиды алюминия или кремния.

    Распределительная хроматография. В отличие от адсорбционной твердая фаза служит только опорой (основой) для стационарной жидкой фазы. Один из типов распределительной хроматографии, как и адсорбционная, осуществляется на колонках, в которых в качестве стационарной фазы применяют влажный крахмал или силикагель.

    Разновидностью распределительной хроматографии является хроматография на бумаге, широко используемая в биохимических лабораториях, в том числе клинических, для разделения пептидов, аминокислот и других веществ.

    Ионообменная хроматография. Ионообменные смолы являются полимерными органическими соединениями, содержащими функциональные группы, способные вовлекаться в ионный обмен. Различают положительно заряженные анионообменники, представленные органическими основаниями и аминами, и отрицательно заряженные катионообменники, содержащие фенольные, сульфо- или карбоксильные группы. Из сильно- и слабоосновных анионообменников чаще используют производные полистирола и целлюлозы. Новейшие методы ионообменной хроматографии, в частности высокоэффективная жидкостная хроматография (ВЭЖХ), широко используются в фармакологии (при создании и определении лекарственных веществ), в клинической биохимии (при определении биологически активных веществ в физиологических жидкостях), в биотехнологических процессах и производствах и других областях: они позволяют определять вещества в нано-, пико- и фемтаграммных количествах.

    Аффинная хроматография (хроматография по сродству). Основана аффинная хроматография на принципе избирательного взаимодействия белков (или других макромолекул) с закрепленными (иммобилизованными) на носителе специфическими веществами – лигандами, которыми могут быть субстраты или коферменты (когда выделяют какой-либо фермент) , антигены (или антитела) , гормоны или рецепторы и т. д.

    Гель-хроматография. В препаративных целях, особенно при очистке белков от примесей, широко используют метод молекулярных сит, или гель-хроматографию.

    Электрофорез. Метод свободного электрофореза, детально разработанный лауреатом Нобелевской премии А. Тизелиусом, основан на различии в скорости движения (подвижности) белков в электрическом поле, которая определяется величиной заряда белка при определенных значениях рН и ионной силы раствора.

    Одним из наиболее распространенных методов фракционирования белков (как и методов оценки гомогенности) является диск-электрофорез (от англ. discontinuous – прерывистый, перемежающийся) в полиакриламидном геле, при котором используют пары буферных растворов с различными значениями рН и разной степени пористости гель.

    Очистка белков от низкомолекулярных примесей

    Применение в определенной последовательности ряда перечисленных методов позволяет получить белок в очищенном состоянии, не лишенный, однако, некоторых примесей солей. Для полного освобождения белков от низкомолекулярных примесей в настоящее время используют методы диализа, гельхроматографии, кристаллизации, ультрафильтрации.

    При диализе применяют полупроницаемые мембраны (целлофан, коллодийная пленка) , диаметр пор которых варьирует в широких пределах. Белки, как правило, не диффундируют через такую мембрану, в то время как низкомолекулярные вещества легко проникают через нее в окружающую среду.

    Метод кристаллизации белков основан на достижении критической точки начала осаждения белка из раствора сульфата аммония при медленном повышении температуры. Уже получены сотни кристаллических белков. Однако не всякий кристаллический белок является гомогенным, поскольку при одной и той же концентрации раствора сульфата аммония могут кристаллизоваться близкие по размерам и массе разные белки.

    Наилучшие результаты при освобождении белков от низкомолекулярных примесей получают с помощью гельхроматографии и ультрафильтрации. Последняя основана на продавливании растворов белка через специальные мембраны, задерживающие белковые молекулы, что позволяет не только освободить белковые растворы от низкомолекулярных примесей, но и концентрировать их.

    На заключительном этапе выделения и очистки белков исследователя всегда интересует вопрос о гомогенности полученного белка. Нельзя оценивать гомогенность индивидуального белка только по одному какому-либо физико-химическому показателю. Для этого пользуются разными критериями. Из огромного числа хроматографических, электрофоретических, химических, радио- и иммунохимических, биологических и гравитационных методов наиболее достоверные результаты при определении гомогенности белка дают ультрацентрифугирование в градиенте плотности сахарозы или других в-в.

    Кинетика ферментативной реакции-т. е зависимость скорости реакции от ее условий, определяется в первую очередь свойствами катализатора.

    Модель Михаэлиса-Ментена.

    Исходит из того, что вначале субстрат А образует с ферментомЕ комплекс, который превращается в продукт В, намного быстрее, чем в отсутствии фермента.

    Константа скорости каталитической реакции соответствует числу молекул субстрата, превратившихся в продукт одной молекулой фермента за 1 сек.

    Активность фермента:


    [ЕА]/[Е]t=[А]+Км[А],


    где[Е]t-общая концентрация фермента


    V=Ккат. [ЕА]

    V=Ккат. *[Е]t*[А]/Км+[А], [М/с]


    -уравнение Мехаэлиса-Ментена.

    Уравнение содержит два параметра, которые не зависят от концентрации субстрата[А], но характеризуют свойства фермента.


    1) Vмах. =Ккат. *[Е]t-

    характеризует эффективность катализа

    2) Км-константа Михаэлиса


    Км=[А] при V=Vмах/2 Км=[Е]*[А]/ [ЕА],


    характеризует сродство фермента к субстрату.

    Высокое сродство к субстрату характеризуется низкой величиной Км и наоборот.

    Все это осуществляется при определенных условиях (допущениях) :

    -необратимое превращение ЕА в Е+В

    -достижение равновесия м/д Е, А и ЕА

    -отсутствие в растроре других форм фермента, кроме ЕА и Е


    6. Механизмы окислительного и субстратного фосфорилирования


    Примером субстратного фосфорелирования можно считать второй этап гликолиза. Фермент дегидрогиназа ФГА образует с 3-ФГА фермент-субстратный комплекс, с которым происходит окисление субстарта и передача электронов и протонов на НАД. В ходе окисления ФГА до ФГК в фермент-субстратном комплексе возникает высокоэнергетическая связь) т. е. связь с очень высокой свободной энергией гидролиза). Далее осуществляется фосфоролиз этой связи, в результате чего SН-фермент отщепляется от субстрата, а к остатку карбоксильной группы субстрата присоединяется неорганический фосфат, причем связь сохраняет значительный запас энергии, освободившийся в результате окисления 3-ФГА. Высокоэнергетическая фосфатная группа передается на АДР и образуется АТФ. Так каа в данном случае высокоэнергетическая ковалентная связь фосфата формируется прямо на окисляемом субстрате, такой процесс-субстратное фосфорелирование.

    Процесс фосфорелирования АДР с образованием АТФ, сопряженный с переносом электронов по транспортной цепи митохондрий получил название окислительного. По поводу механизма окислительного фосфорелирования существует 3 теории:химическая, механохимическая и хемиосмотическая.

    Согласно химической гипотезы в митохондриях имеются интермедиаторы белковой природы образующие комплексы с соответствующими восстановленными переносчиками. В результате окисления переносчика в комплексе возникает высокоэнергетическая связь. При распаде комплекса к интермедиатору с высокоэнергетической связью присоединяется неорганический фосфат, который затем передается на АДР.

    Способность митохондриальных мембран к конформационным изменениям и связь этих изменений со степенью энергизаци митохондрий послужила основой для создания механохимических гипотез образования АТФ в ходе окислительного фосфорелирования. Согласно этим гипотезам энергия, высвобождающаяся в процессе переноса электронов непосредственно использующихся для перевода белков внутренней мембраны митохондрий в новое, богатое энергией конформационное состояние, приводящее к образованию АТФ. Таким образом, согласно механохимическим гипотезам, энергия окисления, превращается сначало в механическую энергию, а затем в энергию АТФ.

    Хемиосмотическая теория сопряжения. Митчел высказал предположение, что поток электронов через систему молекул переносчиков сопровождается трансортом ионов Н через внутреннюю мембрану митохондрий. В результате на мембране создается электроно-химический потенциал ионов Н, включающий химический или осмотический градиент и электрохимический градиент. Согласно хемиосмотической теории электрохимический трансмембранный потенциал ионов Н и является источником энергии для синтеза АТФ за счет обращения транспорта ионов Н через протонный канал мембранной Н-АТФазы.


    7. Способы разделения и очистки органических веществ


    Для установления состава органического вещества прежде всего необходимо получить его в достаточно чистом состоянии. В зависимости от агрегатного состояния вещества (твердое, жидкое, газообразное) применяют различные методы очистки.

    Твердые вещества могут быть освобождены от содержащихся в них примесей путем перекристаллизации. В этом случае стремятся найти растворитель, растворимость в котором очищаемого вещества значительно отличается от растворимости содержащихся в нем примесей. Если трудно растворимо очищаемое вещество, то оно выкристаллизовывается в чистом виде при охлаждении горячего насыщенного раствора, в то время как примеси остаются в маточном растворе. Если трудно растворимы примеси, то выкристаллизовываются они, а основное вещество остается в растворе. В ряде случаев вещество достаточной степени чистоты может быть получено только в результате многократной перекристаллизации, причем зачастую лучшие результаты получаются при чередовании различных растворителей. Иногда вещество содержит высокомолекулярные или коллоидные окрашенные примеси, которые не могут быть отделены обычной перекристаллизацией. Тогда вещество освобождают от примесей кипячением растворов с адсорбирующими агентами, например с активированным углем.

    Для разделения смесей, в том числе твердых веществ, в последнее время широкое распространение получил метод хроматографии, основы которого были разработаны М. С. Цветом в 1903—1906 гг. Если метод разделения смесей путем кристаллизации основан на различной растворимости компонентов, то метод хроматографии основан на различной адсорбируемое из компонентов смеси каким-либо адсорбентом. Иногда это различие настолько велико, что, обработав раствор небольшим количеством адсорбента, можно полностью извлечь один компонент смеси, оставив другой в растворе. Однако в большинстве случаев различие адсорбируемости компонентов смеси недостаточно для их полного разделения при однократной обработке раствора адсорбентом. Хроматографические методы разделения смесей получили особенно широкое распространение в химии сложных природных соединений, так как многие из этих соединений не перегоняются без разложения и трудно кристаллизуются. Техника хроматографии быстро совершенствуется; это особенно относится к распределительной хроматографии, в частности к хроматографии на бумаге. Так, например, используя метод меченых атомов (радиохроматография на бумаге) , удается быстро разделять очень малые количества смесей.

    Жидкие органические вещества чаще всего разделяют иочищают перегонкой. Каждое индивидуальное жидкое вещество кипит при температуре, при которой давление его паров достигает величины атмосферного давления. Для разделения смесей жидких веществ применяется дробная, или фракционированная, перегонка, основанная на том, что образующийся пар почти всегда имеет другой состав, чем жидкая смесь, а именно: содержание вещества с большим давлением пара обычно выше в парах, чем в исходной смеси, независимо от того, какой состав имела эта смесь. Охлаждая отходящие пары веществ, последовательно собирают отдельные фракции жидкостей, содержащие в разных количествах разделяемые индивидуальные вещества. Подвергая эти фракции повторным перегонкам, можно выделить из них достаточно чистые органические вещества. Успешнее это можно осуществить с помощью так называемых ректификационных колонок.

    Разделение веществ перегонкой происходит тем легче, чем больше различаются парциальные давления паров разделяемых веществ. Однако в некоторых случаях, несмотря на значительную. разницу в точках кипения чистых веществ, их смеси нельзя разделить перегонкой. Причина этого явления заключается в том, что некоторые вещества образуют постоянно кипящие (азеотропные) смеси, состав паров которых не отличается от состава жидкой фазы, в подобных случаях чистое органическое вещество получают либо обходным путем, либо удаляют второй компонент постоянно кипящей смеси, применяя какие-либо другие (химические или физические) методы. Высококипящие жидкости или такие, которые при атмосферном давлении кипят с разложением, очищают перегонкой в вакууме, так как в вакууме температура кипения понижается. В настоящее время для очистки жидких веществ все шире и шире применяется метод хроматографии.

    Очистка газообразных органических веществ производится главным образом путем вымораживания, фракционированного испарения смесей при низких температурах, а также при помощи целого ряда химических операций, позволяющих связать имеющиеся в газообразном веществе примеси. Большие успехи достигнуты в области разделения газов хроматографическим методом. Благодаря большей скорости диффузии газов по сравнению с жидкостями скорость пропускания разделяемого газа через колонку и размеры гранул адсорбента могут быть значительно увеличены. При хроматографическом разделении газов используется также сильная температурная зависимость адсорбции. Иногда весь процесс ведут при низкой температуре, иногда— при высокой, а в ряде случаев выгодно вводить газовую смесь в охлажденную колонку, а затем вытеснять компоненты, постепенно повышая температуру. В последнее время все большее значение приобретает газо-жидкостная, или газовая, хроматография, отличающаяся тем, что в колонку вместо твердого адсорбента помещается пористый материал, пропитанный высококипящей жидкостью. Разделяемые вещества (газы или жидкости в испаренном виде) пропускают через такую колонку в токе инертного газа (N2, H2, Не). Пары разных веществ задерживаются жидкой фазой по-разному, а потому выходят из колонки через разные промежутки времени.

    Самым простым критерием чистоты кристаллического вещества является точка его плавления, так как уже малейшие примеси вызывают ее понижение. Если очищают неизвестное вещество, то его очистку продолжают до тех пор, пока точка плавления не перестанет повышаться. При оценке чистоты жидкого вещества наиболее простым критерием является постоянство его точки кипения при постоянном давлении (при этом нельзя забывать, что постоянными температурами кипения обладают также и азеотропные смеси). Если вещество кристаллизуется при низкой температуре, то наиболее надежным критерием его чистоты является температура замерзания. Большое значение при оценке чистоты известных жидких органических веществ имеют плотность и показатель преломления. Для чистых веществ эти величины при одинаковых условиях определения всегда постоянны.


    Страницы: 1, 2, 3


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.