МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Биофизика. (шпаргалка к экзамену)

    Все фотобиологические процессы протекают по общей схеме:

    1.    Поглощение света молекулой.

    Не все молекулы поглощают свет, поглощается свет не любой длины волны и не всеми атомными группами молекулы. Атомные группы, поглощающие свет определённой длины волны – хромофорные группы. Наиболее хорошо поглощают свет группы с делокализованными π-электронами в длинных цепях сопряжения. Эти электроны могут легко переходить на более высокие энергетические уровни. Процесс релаксации делокализованных электронов наиболее долгий.  После поглощения кванта света хромофорная группа переходит на более высокое энергетическое состояние.

    2.    Дезактивация возбуждённого состояния.

    ·        Внутримолекулярная инверсия. Молекула может вернуться на более низкий энергетический уровень с излучением теплоты или теплоты и флуоресценции.

    ·        Фотохимическая реакция. Уровень энергии возбуждённого состояния превышает энергетический барьер разрыва химических связей, это приводит к протеканию химической реакции.

    ·        Миграция энергии и Конформационные превращения. При этом может происходить миграция энергии к другим атомным группам или молекулам, что сопровождается изменениями конформации.

    3.    Проявление специфического фотобиологического эффекта. Например, перенос протона, регуляторный акт, изменение проницаемости мембран, биосинтез.


    65.    Фотопревращения бактериородопсина. Их характеристика.

    Бактериородопсин – пигмент пурпурных мембран галофильных бактерий. Он создаёт трансмембранный градиент протонов за счёт энергии света, далее этот градиент используется для синтеза АТФ.

    Бактериородопсин состоит из хромофорной группы ретиналя, присоединённой к Лиз-216 белковой группы опсина.

    До поглощения кванта света ретиналь находится у наружной поверхности мембраны, протон электростатически связан с асп-85. При поглощении кванта света, ретиналь переходит в возбуждённое состояние, происходит его цис-транс изомеризация, протон остаётся на асп-85 и затем выделяется на поверхность мембраны. В новом положении ретиналь контактирует с асп-86 у внутренней поверхности мембраны, забирает протон от асп-86, что приводит к обратному изменению конформации. Асп-86 протонируется из внутренней среды.

    Таким образом, цепь переноса:

    Перенос протона бактериородопсином обеспечивается изменением его конформации под действием света.


    66.    Фотоинформационные и фоторегуляционные процессы.

    Фотоинформационные процессы обеспечивают взаимодействие организма с окружающей средой. Фотоинформационные процессы имеют триггерный, нелинейный характер. Свет служит лишь сигналом, запускающим сложную цепь биохимических изменений, которые приводят к определённому биологическому эффекту.

    При процессах зрительной рецепции принимают участие зрительные пигменты, главным из которых является родопсин. Родопсин содержится в мембранах дисковидных структур палочковых рецепторов сетчатки глаза. Родопсин состоит из ретиналя и опсина, но опсин отличается от такового бактерий.

    1.    При поглощении кванта света ретиналем происходит его изомеризация и передача протона другим аминокислотам опсина.

    2.    Опсин меняет свою конформацию и переходит в физиологически активное состояние.

    3.    Активированный опсин фосфорилирует трансдуцин, вызывая его активацию при участии ГТФ. Активированный трансдуцин, в свою очередь, фосфорилирует фосфодиэстеразу, переводя её в активное состояние. Фосфодиэстераза катализирует процесс расщепления цГМФ. Этот этап ответственен за эффект усиления, так как одна активированная молекула фосфодиэстеразы может расщепить много тысяч молекул цГМФ.

    4.    Снижение уровня цГМФ приводит к инактивации Na+ каналов в мембране. Происходит гиперполяризация мембраны, гиперполяризация распространяется электротонически к пресинаптической мембране и вызывает выделение медиатора.

    5.    В темноте снова происходит регенерация родопсина.

    Для фоторегуляторных процессов характерен практически тот же механизм. Во всех процессах обязательно наличие фотохрома, воспринимающего свет, цепи передачи и усиления сигнала и конечного акцептора, ответственного за реализацию эффекта. Конечным эффектом в фоторегуляторных процессах может быть изменение мембранной проницаемости для ионов или гормонов, передача возбуждения на ферменты с изменением их активности, или передача возбуждения на субстрат с последующей его модификацией.


    67.    Фотодеструктивные процессы. Их общая характеристика. Фотосенсибилизация, её виды и механизмы. Основные типы фотодеструктивных изменений в биологических молекулах.

    Фотодеструктивные процессы – это процессы нарушения свойств биологических молекул под действием света. Фотодеструктивные процессы напрямую индуцируются коротковолновым ультрафиолетом, который поглощается нуклеиновыми кислотами и белками. Длинноволновое УФ излучение и видимый свет практически не поглощается НК и белками, для реализации их деструктивного действия большую роль играют фотосенсибилизаторы.

    1.    Фотосенсибилизация с участием O2. Фотодинамические процессы.

    ·        Фотовозбуждённый сенсибилизатор вступает в RedOx реакцию с макромолекулами, в результате образуются реакционноспособные радикалы сенсибилизатора и молекулы биологического субстрата. Радикалы вступают в реакцию с кислородом.

    ·        А другом случае происходит перенос энергии от фотосенсибилизатора на кислород с образованием синглетного кислорода или супероксид-иона. АФК реагируют с биологическими молекулами и повреждают их.

    2.    Фотосенсибилизация без участия O2. Фотостатические процессы.

    ·        Возбуждённый фотосенсибилизатор взаимодействует с субстратом, вызывая его изменение, но не образует с субстратом постоянного соединения.

    ·        Возбуждённый фотосенсибилизатор образует устойчивое соединение с субстратом, нарушая его свойства.

    К основным типам фотодеструктивных изменений относятся: образование или разрыв ковалентных связей (фотполимеризация, фотодимеризация, фотогидратация), фотоионизация, изменение конформации ферментов и их активности, образование перекисей, перекисное окисление липидов.


    68.    Фотодеструктивные процессы. Их общая характеристика. Фотосенсибилизация, её виды и механизмы. Действие ультрафиолетового излучения на биологические мембраны. Механизмы повреждения и их последствия.

    Фотодеструктивные процессы – это процессы нарушения свойств биологических молекул под действием света. Фотодеструктивные процессы напрямую индуцируются коротковолновым ультрафиолетом, который поглощается нуклеиновыми кислотами и белками. Длинноволновое УФ излучение и видимый свет практически не поглощается НК и белками, для реализации их деструктивного действия большую роль играют фотосенсибилизаторы.

    1.    Фотосенсибилизация с участием O2. Фотодинамические процессы.

    ·        Фотовозбуждённый сенсибилизатор вступает в RedOx реакцию с макромолекулами, в результате образуются реакционноспособные радикалы сенсибилизатора и молекулы биологического субстрата. Радикалы вступают в реакцию с кислородом.

    ·        А другом случае происходит перенос энергии от фотосенсибилизатора на кислород с образованием синглетного кислорода или супероксид-иона. АФК реагируют с биологическими молекулами и повреждают их.

    2.    Фотосенсибилизация без участия O2. Фотостатические процессы.

    ·        Возбуждённый фотосенсибилизатор взаимодействует с субстратом, вызывая его изменение, но не образует с субстратом постоянного соединения.

    ·        Возбуждённый фотосенсибилизатор образует устойчивое соединение с субстратом, нарушая его свойства.

    Действие УФ излучения на мембраны складывается из действия на мембранные белки и действия на липиды мембран.

    Свободнорадикальное окисление липидов связано с образованием радикалов жирных кислот под действием активных форм кислорода и перекиси. Образование активных форм кислорода начинается с присоединения электрона к молекуле кислорода.

    При этом может образовываться супероксид-ион, перекись и гидроксильный радикал.

    Эти формы являются очень реакционноспособными и вступают во взаимодействие практически с любыми веществами.

    Возможно присоединение перекиси по двойной связи жирных кислот липидов. Это приводит к образованию липидных перекисей, которые в свою очередь также являются высокоактивными соединениями. В результате они взаимодействуют друг с другом с образованием поперечных сшивок между липидными молекулами. Этот процесс приводит к увеличению количества упорядоченных молекул с ограниченной подвижностью, повышается проницаемость мембраны.

    Для ликвидации действия АФК в клетке работают антиоксидантные системы: Супероксиддисмутаза, каталаза, пероксидаза и системы, направленные на дезактивацию синглетного кислорода: α-токоферол, β-каротин.

    Действие на мембранные белки может протекать по фотодинамическому механизму, через образование АФК, а также без участия кислорода при поглощении излучения самими белками. Основные эффекты повреждения связаны с изменением конформации белков.


    69.    Фотодеструктивные процессы. Действие ультрафиолетового излучения на нуклеиновые кислоты. Механизмы фотореактивации и фотозащиты.

    Фотодеструктивные процессы – это процессы нарушения свойств биологических молекул под действием света. ДНК имеет максимум поглощения в области 260-265нм, поэтому является основной мишенью для действия коротковолнового ультрафиолета. Мишенями являются, в основном, пиримидиновые азотистые основания. Поглощение кванта излучения приводит к образованию возбуждённых форм, дезактивация которых может происходить в различных химических реакциях.

    1.    Фотодимеризация: наиболее частый процесс, составляющий 80% всех летальных эффектов коротковолнового излучения. Эта реакция фотообратима, обратная реакция протекает при других длинах волн.

    2.    Фотогидратация: присоединение воды к возбуждённому пиримидиновому кольцу по двойной связи. Эта реакция не является фотообратимой, но происходит только в одноцепочечных участках ДНК, где идут активные процессы транскрипции и трансляции.

    3.    Образование пиримидиновых аддуктов: Это процесс образования сшивок между пиримидиновыми основаниями и другими веществами. Их образуется немного и они редко приводят к летальным эффектам. Также могут образовываться сшивки пиримидиновых оснований с белками.

    Действие длинноволнового ультрафиолета проявляется только в присутствии фотосенсибилизаторов и при высоких интенсивностях длинноволнового ультрафиолета. Реакции могут протекать по фотодинамическому механизму или без участия кислорода. Фотосенсибилизаторами являются НАДНН+, тиоурацил, тиоуридин, кетоны и псоралены. В качестве продуктов могут образовываться пиримидиновые димеры и одноцепочечные разрывы ДНК.

    Существует два механизма, предотвращающих повреждение нуклеиновых кислот:

    1.    Фотореактивация. Процесс обусловлен действием фермента фотолиазы. Фермент активируется действием света 320-500нм и катализирует распад пиримидиновых димеров.

    2.    Фотозащита. При предварительном облучении клеток длинноволновым ультрафиолетом значительно снижается их чувствительность к коротковолновому ультрафиолету. Это снижение чувствительности обеспечивается синтезом серотонина, который берёт на себя часть поступающего излучения.


    70.    Фотодеструктивные процессы. Их общая характеристика. Действие ультрафиолетового излучения на белки.

    Фотодеструктивные процессы – это процессы нарушения свойств биологических молекул под действием света. Фотодеструктивные процессы напрямую индуцируются коротковолновым ультрафиолетом, который поглощается нуклеиновыми кислотами и белками. Длинноволновое УФ излучение и видимый свет практически не поглощается НК и белками, для реализации их деструктивного действия большую роль играют фотосенсибилизаторы.

    В белках наиболее подвержены действию ультрафиолета аминокислоты триптофан и цистеин.

    Триптофан под действием коротковолнового ультрафиолета подвергается ионизации. Триптофан отделяет электрон, который сольватируется в растворе. Далее, катион диссоциирует на протон и нейтральный радикал, обладающий высокой реакционной способностью, и может образовывать сшивки с соседними группами аминокислотной цепи белка. Если реакции подвергся ТРП активного центра, это приводит к потере реакционной способности белка, а если нет, то это приводит к изменению конформации белка и снижению функциональной активности.

    Сольватированный электрон может соединяться с растворённым кислородом с образованием супероксид-иона, который может вызывать повреждения по фотодинамическому механизму.

    Фотореакции цистеина происходят по сходному механизму, что приводит к разрыву дисульфидной связи, нарушению конформации белка и изменению его активности.


    71.    Виды ионизирующих излучений. Их физическая характеристика. Понятие дозы ионизирующего излучения. Виды дозиметрических показателей.

    Ионизирующие излучения условно подразделяются на электромагнитные излучения и корпускулярные излучения:

    ·        Ионизирующие излучения представлены электромагнитными волнами высокой частоты. Рентгеновское – 3х106 – 3х109 ГГц и γ-излучение – >3х109 ГГц

    ·        Корпускулярные излучения представлены частицами с ненулевой массой, обладающими высокими скоростями. Такими частицами могут быть электроны, позитроны, нейтроны, α-частицы, ускоренные ионы.

    В результате радиоактивного распада образуется три типа излучения, различных по своим характеристикам.

    Линейная плотность ионизации. Эта величина показывает число ионов одного знака, образованных ионизирующей частицей или фотоном на элементарном пути. Наибольшей линейной плотностью ионизации обладает α-излучение, поскольку оно образовано тяжёлыми ядрами гелия и обладает большой кинетической энергией. Величина линейной плотности ионизации пропорциональна энергии излучения.

    Средний линейный пробег. Величина, отражающая проникающую способность излучения. Самым проникающим излучением является γ-излучение. Средний пробег в воздухе 300м., в тканях – 1 метр.

    β-излучение обладает промежуточными значениями линейной плотности и линейного пробега.

    Для оценки величины ионизирующего излучения и его влияния на вещество используют дозиметрические показатели.

    1.    Доза излучения или экспозиционная доза. Это величина, которая даёт представление о количестве энергии излучения, падающей на объект. Фактически равно полному заряду ионов одного знака, возникающих в элементарном объёме воздуха в отношении к массе воздуха. Измеряется в Кулонах на килограмм. Внесистемная единица: рентген. 1рентген=2,58х10-4Кл/кг. Интенсивность излучения определяют в единицах рентген в секунду.

    2.    Доза облучения или поглощённая доза. Это величина энергии ионизирующего излучения, переданная веществу. Эта величина измеряется в единицах Грей. 1Грей равен дозе любого ионизирующего излучения при котором в 1кг вещества поглощается 1Дж энергии этого излучения. Внесистемная единица: 1Рад = 10-2Грей.

    3.    Эквидозиметрические показатели. Это показатели биологического действия ионизирующего излучения.

    ·        Относительная биологическая эффективность – коэффициент, показывающий во сколько раз излучение данного типа отличается от стандартного рентгеновского излучения при 180-250 кэВ.

    ·        Эквивалентная доза – поглощённая в органах и тканях доза излучения умноженная на взвешенный коэффициент для данного вида излучения, отражающий качественное воздействие излучения на объект. Единица измерения Зиверт = 1Дж/кг. Внесистемная: БЭР = 1/100 Зиверт.


    72.    Действие ионизирующего излучения на вещество.

    Действие ионизирующего излучения на вещество специфично для каждого вида излучения и представляет собой первичные эффекты излучения.

    1.    γ-излучение.

    ·        Фотоэффект

    ·        Некогерентное рассеяние. Эффект Комптона. Рассеяние с изменением длины волны. Энергия расходуется на ионизацию, отрыв электрона от атома и сообщение ему кинетической энергии. При этом происходит увеличение длины волны и распространение её в веществе.

    ·        Образование электрон-позитронных пар и вторичного β-излучения.

    ·        Фотоядерная реакция. Выбивание нуклона из ядра с образованием лёгких изотопов.

    2.    Рентгеновское излучение

    ·        Фотоэффект. Ионизация или возбуждение атомов при достаточной частоте излучения.

    ·        Когерентное рассеяние

    ·        Некогерентное рассеяние. Эффект Комптона.

    3.    α-излучение

    ·        Ионизация или возбуждение атомов, зависящее от энергии излучения

    ·        Захват электронов вещества и превращение в атом гелия

    ·        Упругое взаимодействие с ядрами

    ·        Рассеяние

    4.    β-излучение

    ·        Ионизация или возбуждение атомов

    ·        Возникновение тормозного рентгеновского излучения

    ·        Аннигиляция с позитронами с образованием γ-излучения.

    5.    Нейтронное излучение

    ·        Упругое рассеяние

    ·        Неупругое рассеяние с передачей кинетической энергии ядру

    ·        Радиационный захват ядром атома с образованием тяжёлого изотопа.


    73.    Действие ионизирующего излучения на биологические макромолекулы. Этапы радиационного повреждения макромолекул. Понятие о прямом и непрямом действии ионизирующего излучения. Характеристика прямого действия ионизирующего излучения.

    Вторичные эффекты ионизирующего излучения проявляются на уровне макромолекул. Основные вторичные эффекты это:

    1.    Увеличение скорости теплового молекулярного движения.

    2.    Характеристическое рентгеновское излучение. При выбивании электронов с внутренних энергетических уровней происходит заполнение этих уровней с внешних энергетических уровней, что сопровождается испусканием рентгеновского излучения.

    3.    Люминесценция – свечение вследствие перехода электронов с возбуждённых уровней на основные.

    4.    Химические реакции, обусловленные переходом атомов в возбуждённое состояние с преодолением активационных барьеров реакций.

    Действие ионизирующего излучение проявляется в несколько этапов.

    1.    Физическая стадия.

    Энергия излучения передаётся веществу, в нём возникают ионизированные и возбуждённые молекулы, неравномерно распределённые в объёме вещества. Эти эффекты проявляются в первые 10-16-10-13с.

    2.    Физико-химическая стадия.

    Эта стадия представлена различными реакциями, приводящими к перераспределению энергии между молекулами. В результате образуются активные молекулярные элементы: ионы, радикалы, сольватированные электроны. 10-13-10-6с.

    3.    Химическая стадия.

    Радикалы взаимодействуют, образуя повреждения разного рода, что приводит к инактивации или нарушению функций макромолекул. 10-6-10-3с.

    Различают два механизма радиационного повреждения макромолекул:

    Прямой: Когда инактивированными оказываются молекулы непосредственно поглотившие энергию излучения.

    Непрямой: Когда молекулы инактивируются в результате взаимодействия с активными реакционноспособными продуктами радиационного воздействия.

    Прямое действие ионизирующего излучения исследуют при облучении сухих очищенных препаратов макромолекул. Прямое действие на ДНК выражается в одноцепочечных и двухцепочечных разрывах, межмолекулярных поперечных сшивках нуклеотидов и образовании разветвлённых цепей ДНК. Прямое действие на белки связано с изменением аминокислотного состава, нарушением третичной структуры, с разрывами АК цепей, разрывами дисульфидных связей, агрегацией молекул. Инактивация белка происходит при повреждении только определённых его групп, но его инактивация происходит даже при поглощении одного кванта излучения молекулой. Этот эффект связан с миграцией энергии в белках от места поглощения к месту проявления эффекта.


    74.    Действие ионизирующего излучения на биологические макромолекулы. Этапы радиационного повреждения макромолекул. Понятие о прямом и непрямом действии ионизирующего излучения. Характеристика непрямого действия ионизирующего излучения.

    Вторичные эффекты ионизирующего излучения проявляются на уровне макромолекул. Основные вторичные эффекты это:

    Увеличение скорости теплового молекулярного движения.

    Характеристическое рентгеновское излучение. При выбивании электронов с внутренних энергетических уровней происходит заполнение этих уровней с внешних энергетических уровней, что сопровождается испусканием рентгеновского излучения.

    Люминесценция – свечение вследствие перехода электронов с возбуждённых уровней на основные.

    Химические реакции, обусловленные переходом атомов в возбуждённое состояние с преодолением активационных барьеров реакций.

    Действие ионизирующего излучение проявляется в несколько этапов.

    1.    Физическая стадия.

    Энергия излучения передаётся веществу, в нём возникают ионизированные и возбуждённые молекулы, неравномерно распределённые в объёме вещества. Эти эффекты проявляются в первые 10-16-10-13с.

    2.    Физико-химическая стадия.

    Эта стадия представлена различными реакциями, приводящими к перераспределению энергии между молекулами. В результате образуются активные молекулярные элементы: ионы, радикалы, сольватированные электроны. 10-13-10-6с.

    3.    Химическая стадия.

    Радикалы взаимодействуют, образуя повреждения разного рода, что приводит к инактивации или нарушению функций макромолекул. 10-6-10-3с.

    Различают два механизма радиационного повреждения макромолекул:

    Прямой: Когда инактивированными оказываются молекулы непосредственно поглотившие энергию излучения.

    Непрямой: Когда молекулы инактивируются в результате взаимодействия с активными реакционноспособными продуктами радиационного воздействия.

    Непрямое действие при облучении растворов биологических веществ. При этом непрямой эффект излучения проявляется значительно сильнее, чем прямой. Радиочувствительность при разбавлении возрастает в 100 раз. Повреждение органических молекул в растворе в большой мере связано с продуктами радиолиза воды. Поскольку в растворе молекул воды значительно больше, чем растворённых веществ, вероятность поглощения излучения ими значительно больше.

    В процессе прохождения частицы через воду вдоль её пути образуются возбуждённые производные воды: радикал протона, гидроксирадикал, сольватированные электроны, ион гидроксония. Часть образующихся радикалов рекомбинируют с образованием нейтральных продуктов или перекиси, но часть радикалов может взаимодействовать с растворёнными органическими молекулами. В результате образуются свободные органические радикалы, которые могут вступать в дальнейшие реакции, часто имеющие цепной характер.


    75.    Действие ионизирующего излучения на биологические макромолекулы. Механизмы радиационного повреждения макромолекул. Модификация радиочувствительности.

    Различают два механизма радиационного повреждения макромолекул:

    Прямой: Когда инактивированными оказываются молекулы непосредственно поглотившие энергию излучения.

    Непрямой: Когда молекулы инактивируются в результате взаимодействия с активными реакционноспособными продуктами радиационного воздействия.

    Прямое действие ионизирующего излучения

    исследуют при облучении сухих очищенных препаратов макромолекул. Прямое действие на ДНК выражается в одноцепочечных и двухцепочечных разрывах, межмолекулярных поперечных сшивках нуклеотидов и образовании разветвлённых цепей ДНК. Прямое действие на белки связано с изменением аминокислотного состава, нарушением третичной структуры, с разрывами АК цепей, разрывами дисульфидных связей, агрегацией молекул. Инактивация белка происходит при повреждении только определённых его групп, но его инактивация происходит даже при поглощении одного кванта излучения молекулой. Этот эффект связан с миграцией энергии в белках от места поглощения к месту проявления эффекта.

    Непрямое действие при облучении растворов биологических веществ.

    При этом непрямой эффект излучения проявляется значительно сильнее, чем прямой. Радиочувствительность при разбавлении возрастает в 100 раз. Повреждение органических молекул в растворе в большой мере связано с продуктами радиолиза воды. Поскольку в растворе молекул воды значительно больше, чем растворённых веществ, вероятность поглощения излучения ими значительно больше.

    В процессе прохождения частицы через воду вдоль её пути образуются возбуждённые производные воды: радикал протона, гидроксирадикал, сольватированные электроны, ион гидроксония. Часть образующихся радикалов рекомбинируют с образованием нейтральных продуктов или перекиси, но часть радикалов может взаимодействовать с растворёнными органическими молекулами. В результате образуются свободные органические радикалы, которые могут вступать в дальнейшие реакции, часто имеющие цепной характер.

    Изменение условий часто выражается в изменении радиочувствительности, модификации радиочувствительности.

    1.    Эффект разбавления. Понижение концентрации раствора макромолекул повышает выход инактивированных молекул. Этот эффект связан с непрямым механизмом действия излучения.

    2.    Кислородный эффект. С ростом концентрации кислорода усиливается радиочувствительность.

    3.    Температурный эффект. Чувствительность увеличивается с ростом температуры.

    4.    Эффект молекулярных примесей. Радиосенсибилизация и радиопротекция.


    76.    Действие ионизирующего излучения на клеточном уровне.

    Действие ионизирующего излучения на клеточном уровне определяется степенью поражения отдельных компонентов клетки. Для большинства клеток летальная доза 1-100Грей. Это связано с усилением повреждающего действия излучения за счёт непрямого действия. Для проявления летального действия достаточно инактивации 0,1% молекул.

    Критическими для клетки являются повреждение ДНК, ферментов и липидов мембран. Конечным эффектом является гибель клеток или мутационный процесс при повреждении ДНК.

    Существует два типа гибели: интерфазная гибель и репродуктивная гибель.

    Оба типа реализуются путём некроза или апоптоза. Некроз характерен при облучении высокими дозами. В этом случае образуются окислительные радиоизотопы, которые повышают проницаемость мембран и инактивируют ионные насосы. Это приводит к изменению осмотического давления и разрушению мембранных структур.

    Апоптоз, или запрограммированная гибель, - это механизм избавления организма от функционально неполноценных клеток. Этот механизм является преобладающим при небольших дозах облучения и связан с активацией генов клеточной гибели. Происходит синтез комплекса ферментов, вызывающих активацию эндонуклеаз и разрушение ДНК.

    Апоптоз запускается с рецепторов внешней мембраны, с рецепторов мембран митохондрий или при появлении большого числа структурных повреждений ДНК. Апоптоз свойственен биологическим структурам любого уровня.


    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.