МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Биофизика. (шпаргалка к экзамену)


    53.    Регуляция работы ионных каналов. Механизмы регуляции. Фармакологическая блокада ионных каналов.

    Изменение состояния канала обеспечивается работой воротного механизма, который представлен двумя белковыми молекулами. Эти белковые молекулы, так называемые активационные ворота и инактивационные ворота, изменяя свою конформацию, могут перекрывать ионный канал.

    Для потенциалзависимого канала, в состоянии покоя активационные ворота закрыты, инактивационные ворота открыты (канал закрыт). При действии на воротную систему сигнала активационные ворота открываются и начинается транспорт ионов через канал (канал активирован). При значительной деполяризации мембраны клетки инактивационные ворота закрываются и транспорт ионов прекращается (канал инактивирован). При восстановлении уровня МП канал возвращается в исходное (закрытое) состояние.

    В зависимости от сигнала, который вызывает открытие активационных ворот, селективные ионные каналы подразделяют на:

    ·        хемочувствительные – регуляция лигандом;

    ·        потенциалзависимые – регуляция мембранным потенциалом;

    ·        механочувствительные – реагируют на деформацию мембраны.

    Наряду с этим, существуют механизмы блокады каналов. Эти механизмы условно подразделяются на естественные и искусственные.

    В естественных условиях блокада может происходить связыванием блокирующего агента в просвете канала или аллостерическим связыванием агента, что вызывает стабилизацию закрытого состояния канала.

    Возможна также искусственная блокада каналов. Ингибиторами натриевых каналов являются тетродотоксин, сакситоксин – неконкурентно связываются в просвете канала. Местные анастетики, новокаин, конкурентно связываются и не действуют в кислой среде, вытесняясь протонами. Стрихнин является аллостерическим блокатором натриевых каналов.

    Тетраэтиламмоний является неконкурентным ингибитором калиевых каналов.


    54.    Облегчённая диффузия. Характеристика процесса.

    Облегчённая диффузия – это механизм пассивного транспорта с участием с участием специфических переносчиков. Перенос происходит во много раз быстрее, чем простая диффузия.

    Перенос облегчённой диффузией одного вещества по градиенту концентрации может быть сопряжён с вторично активным транспортом другого вещества против его градиента концентрации.

    Перенос может осуществляться разными механизмами:

    1.    Миграционный – происходит перемещение переносчика внутри мембраны от одной её поверхности до другой. При этом переносчик может оставаться в плоскости мембраны и присоединять вещество только на поверхностях мембраны, а может выходить за пределы мембраны и присоединять вещество в растворе. Механизмы малой и большой карусели.

    2.    Ротационный – происходит поворот молекулы переносчика вокруг своей оси, лежащей в плоскости мембраны.

    3.    Сдвиговый – происходит изменение конформации переносчика, полный поворот молекулы переносчика не происходит, отдельные группы закреплены в липидном слое.

    Переносчики обладают высокой специфичностью по отношению к переносимым веществам.

    Скорость облегчённой диффузии обладает свойством насыщения, оно происходит, когда все молекулы переносчика будут заняты.


    55.    Мембранный потенциал покоя. Его механизмы. Расчёт величины мембранного потенциала.

    Мембранный потенциал покоя образуется главным образом благодаря выходу К+ из клетки через неселективные ионные каналы. Утечка из клетки положительно заряженных ионов приводит к тому, что внутренняя поверхность мембраны клетки заряжается отрицательно относительно наружной.

    Мембранный потенциал, возникающий в результате утечки К+ , называют «равновесным калиевым потенциалом» (Ек). Его можно рассчитать по равнению Нернста

    ПП, как правило, очень близок к Ек, но не точно равен ему. Эта разница объясняется тем, что свой вклад в формирование ПП вносят:

    •  поступление в клетку Na+ и Cl– через неселективные ионные каналы; при этом поступление в клетку Cl– дополнительно гиперполяризует мембрану, а поступление Na+ – дополнительно деполяризует ее; вклад этих ионов в формирование ПП невелик, так как проницаемость неселективных каналов для Cl– и Na+ в 2,5 и 25 раза ниже, чем для К+.

    •  прямой электрогенный эффект Na+/К+ ионного насоса, возникающий в том случае, если ионный насос работает асимметрично (На 2 иона, поступающих в клетку K+ приходится 3 иона Na+, выносимых во внешнюю среду).

    Расчёт величины ПП можно произвести и с учётом этих влияний. Влияния других ионов и электрогенного эффекта учитывается в формуле Томаса:

    m – коэффициент электрогенности.

    Если принять средние концентрации ионов и проводимости мембраны:

    Тогда величина потенциала покоя получается порядка -60-70мВ.


    56.    Мембранный потенциал действия. Механизмы и общие свойства мембранного потенциала действия. Расчёт величины мембранного потенциала действия.

    Потенциал действия развивается на мембране в результате её возбуждения и сопровождается резким изменением мембранного потенциала.

    В потенциале действия выделяют несколько фаз:

    •  фаза деполяризации;

    •  фаза быстрой реполяризации;

    •  фаза медленной реполяризации (отрицательный следовый потенциал);

    •  фаза гиперполяризации (положительный следовый потенциал).

    Фаза деполяризации. Развитие ПД возможно только при действии раздражителей, которые вызывают деполяризацию клеточной мембраны. При деполяризации клеточной мембраны до критического уровня деполяризации (КУД) происходит лавинообразное открытие потенциалчувствительных Na+-каналов. Положительно заряженные ионы Na+ входят в клетку по градиенту концентрации (натриевый ток), в результате чего мембранный потенциал очень быстро уменьшается до 0, а затем приобретает положительное значение. Явление изменения знака мембранного потенциала называют реверсией заряда мембраны.

    Фаза быстрой и медленной реполяризации. В результате деполяризации мембраны происходит открытие потенциалчувствительных К+-каналов. Положительно заряженные ионы К+ выходят из клетки по градиенту концентрации (калиевый ток), что приводит к восстановлению потенциала мембраны. В начале фазы интенсивность калиевого тока высока и реполяризация происходит быстро, к концу фазы интенсивность калиевого тока снижается и реполяризация замедляется.

    Фаза гиперполяризации развивается за счет остаточного калиевого тока и за счет прямого электрогенного эффекта активировавшейся Na+/K+ помпы.

    Изменение величины мембранного потенциала во время развития потенциала действия связано в первую очередь с изменением проницаемости мембраны для ионов натрия и калия. Расчёт мембранного потенциала можно произвести по уравнению Нернста для равновесного потенциала.

    В фазу деполяризации происходит резкое изменение проницаемости для натрия:

    В состоянии покоя:

    В фазу деполяризации:

    Проводимость мембраны для ионов натрия возрастает в 500 раз за счёт открытия специфических натриевых каналов. Происходит скачок мембранного потенциала от -60-70мВ до +40+50мВ.

    Одним из главных свойств ПД является его способность распространяться вдоль мембраны без затухания. Это лежит в основе нервного проведения импульса.


    57.   Модель Ходжкина-Хаксли. Её характеристика и значение для биофизики клетки.

    Модель предполагает:

    ·        Изменение токов, текущих через мембрану и мембранного потенциала является следствием изменения проницаемости мембраны для натрия и калия.

    ·        Перенос натрия и калия осуществляется различными не взаимодействующими структурами.

    ·        Пропускная способность мембраны управляется электрическим полем. Во внутренней структуре мембраны присутствуют заряженные частицы, управляющие её проводимостью.

    Суммарный ток через мембрану представили как сумму емкостного тока и ионных токов:

    Было высказано предположение, что калий может проходить через мембрану, если к каналу одновременно подойдут 4 однозаряженных частицы. Эта вероятность была представлена, как

    Для натрия проведение возможно при присоединении трёх активирующих частиц m и отсоединения одной блокирующей h.

    При возрастании положительного мембранного потенциала изменяются коэффициенты α и β. Этот механизм лежит в основе потенциалзависимого переноса натрия и калия во время формирования ПД.

    Модель Ходжкина-Хаксли даёт хорошее согласие с опытными данными и может быть использована для моделирования электрических процессов в мембране.


    58.    Молекулярные механизмы сопряжения окисления и фосфорилирования.

    Сопряжение окисления и фосфорилирования – это механизм, благодаря которому происходит преобразование энергии электрохимического градиента в энергию химических связей АТФ.

    Формирование трансмембранного градиента протонов обеспечивается работой электрон-транспортной цепи. Преобразование этого градиента протонов в энергию макроэргических связей АТФ обеспечивается работой АТФ-синтазного комплекса.

    АТФ-синтазный комплекс состоит из трансмембранного комплекса F0, образующего канал в мембране, и комплекса F1, располагающегося вне мембраны. F1 состоит из нескольких субъединиц: 3α, 3β, γ, δ и ε. α и β субъединицы могут вращаться вокруг γ-субъединицы, δ и ε служат для прикрепления к комплексу F0.

    Невозможность образования макроэргической связи обусловлена наличием избыточной электронной плотности на атомах кислорода фосфатных остатков. β-субъединица оттягивает электронную плотность от атома кислорода, а в процессе вращения комплекса происходит сближение фосфата и АДФ, что облегчает образование связи. Вращение комплекса обусловлено конформационными изменениями при протонировании АК остатков протонами, проходящими через канал комплекса F0. На каждые 2 проходящих протона синтезируется одна молекула АТФ. Суть работы АТФ-синтазного комплекса заключается в преодолении потенциального барьера реакции образования макроэргической связи АТФ.


    59.    Молекулярные механизмы активного транспорта.

    Основные особенности первично активного транспорта:

    1.    Осуществляется против концентрационного градиента.

    2.    Система первичного транспорта очень специфична.

    3.    Для его обеспечения необходима АТФ или другие источники энергии.

    4.    Обменивает один вид ионов на другой (К/Na насос).

    5.    Активный транспорт с помощью ионных насосов избирательно подавляется блокирующими агентами.

    Механизм вторично активного транспорта заключается в переносе веществ через мембрану против концентрационного градиента, обеспечиваемом энергией, которая высвобождается при переносе другого вещества по градиенту. В отличие от первично активного транспорта, энергия для которого высвобождается при гидролизе АТФ.

    Механизм работы K/Na-АТФазы.

    Фермент состоит из двух субъединиц, закреплённых в мембране. Для закрепления необходимы фосфолипиды, при их отсутствии прекращается АТФазная активность фермента.

    1.    На первом этапе фермент расположен у внутренней стороны мембраны, где происходит его фосфорилирование и присоединение иона Na+. Происходит расщепление АТФ. Это приводит к изменению конформации белка и перемещению его к наружной стороне мембраны. Энергия для этого процесса берётся от расщепления АТФ.

    2.    Изменение приводит к тому, что новая конформация имеет низкое сродство к Na+ и высокое сродство к K+. При этом, на внешней стороне мембраны выделяется натрий и присоединяется калий. Это в свою очередь приводит к новому изменению конформации и возвращению K/Na-АТФазы к внутренней стороне мембраны.

    3.    На внутренней стороне мембраны происходит отщепление АДФ и фосфата, фермент снова готов к новому циклу работы.

    Энергия АТФ используется для осуществления переходов между конформациями, имеющими разное сродство к Na+ и K+. За каждый цикл работы переносится 2 иона калия и 3 иона натрия.


    60.    Молекулярная организация сократительного аппарата миофибрилл.

    В сократительном аппарате миофибриллы выделяют тонкие и толстые нити. Тонкие нити состоят из глобулярного белка актина и проходят через Z-диски, на каждые 7 молекул актина приходится две молекулы тропомиозина, расположенных в каждой продольной борозде двойной спирали актина. Также в состав тонких нитей входит тропонин, соединённый с молекулами тропомиозина. Толстые нити состоят из фибриллярного белка миозина. Сам миозин в свою очередь состоит из лёгкого меромиозина, образующего продольную часть молекулы, и тяжёлого меромиозина, образующего головку миозина. Каждая нить миозина состоит из 180-360 молекул миозина, соединённых частями лёгкого меромиозина. Головки миозина – суперспирализованные участки тяжёлого меромиозина - выступают с определённой периодичностью на обоих концах нити и в процессе сокращения контактируют с нитями актина.

    61.   Мостиковая гипотеза мышечного сокращения. Рабочий цикл мостика, его этапы. Механизмы механохимического сопряжения в сократительном аппарате.

    Мостиковая гипотеза мышечного сокращения заключается в том, что сокращение миофибрилл обеспечивается циклической работой головок миозина, образующих мостики с актином и продвигающих нити актина друг навстречу другу.

    Рабочий цикл мостика:

    1.    Головка миозина соединена с нитью актина. Головка имеет высокое сродство к АТФ.

    2.    К головке миозина присоединяется молекула АТФ. Это приводит к изменению конформации головки и нарушению стереоспецифического соответствия между контактирующими участками актина и миозина.

    3.    Головка миозина теряет связь с актином и приобретает АТФ-азную активность.

    4.    Происходит гидролиз АТФ на свободном миозине и изменение конформации головки. Энергия гидролиза АТФ запасается  в виде механической потенциальной энергии деформации головки миозина. В то же время головка приобретает сродство к актину.

    5.    Головка миозина присоединяется к одной из глобул актина перпендикулярно оси нити и поворачивается на угол 45°, проталкивая актиновую нить в направлении от Z-мембраны. Соединение с актиновой нитью обеспечивается сначала слабым электростатическим взаимодействием, а затем сильным стереоспецифичным взаимодействием. Изменение конформации и высвобождение накопленной потенциальной энергии происходит при отсоединении продуктов гидролиза АТФ. Система возвращается к минимуму свободной энергии.


    62.    Механика и энергетика мышечного сокращения.

    Механика мышечного сокращения изучалась Хиллом. В процессе сокращения мышца может работать в двух режимах: Изометрический режим – мышца развивает силу при постоянной длине, Изотонический режим – мышца укорачивается при постоянной нагрузке. При изотоническом сокращении укорочение убывает с ростом груза, и его максимум достигается тем раньше, чем больше этот груз. Развитие изометрического напряжения следует той же зависимости.

    Хилл эмпирически установил зависимость скорости изотонического сокращения от нагрузки.

    Эта зависимость имеет гиперболическую форму и справедлива при постоянных скоростях сокращения и при физиологических длинах мышцы. P0 зависит от длины саркомера в мышечном волокне и максимальна в области 1,7-2,5мкм, когда существует возможность образования максимального числа мостиков между актином и миозином. Работа, производимая мышцей при сокращении, будет равна, по уравнению Хилла.

    Эта функция имеет колоколообразную форму от 0 до P0 с максимумом при P≈0,31 P0, что соответствует оптимальной нагрузке мышцы.

    Одновременно с совершением работы, мышца выделяет тепло. Тепло выделяется как при изотоническом сокращении, так и при изометрическом напряжении и при растяжении мышцы под действием внешней силы. На раннем этапе сокращения выделяется теплота активации Qa, связанная с выделением Ca2+ в саркоплазму, а по мере сокращения мышцы выделяется теплота сокращения Qc в результате взаимодействия тонких и толстых нитей. Общее изменение энергии в системе таким образом равно:

    Эффект Фенна: полная энергия, выделяемая мышцей при одиночном сокращении больше, чем при изометрическом сокращении. Во время сокращения происходит выделение экстратеплоты за счёт укорочения мышцы, скорость её выделения пропорциональна скорости укорочения.

    Механическая эффективность мышцы определяется как отношение работы к израсходованной энергии.

    Эффективность может достигать 45% у мышц лягушки и 75% для мышц человека.


    63.    Миграция энергии и электронов в биологических структурах.

    Под миграцией энергии понимают безызлучательный перенос энергии или электронов между молекулами, находящимися в основном состоянии или между отдельными частями одной молекулы. Возможность переноса электронов обеспечивается наличием коллективизированных π-электронных облаков. Выделяют три механизма миграции энергии:

    1.    Индуктивно-резонансный.

    Происходит миграция энергии по синглетным уровням. Возбуждённым электроном донора генерируется переменное магнитное поле, которое взаимодействует с электроном акцептора. Если частота переменного поля совпадает с частотой перехода электрона донора на возбуждённый уровень, происходит перенос энергии. Такой механизм имеет место при небольших энергиях взаимодействия, но перенос может происходить на большие расстояния.

    2.    Обменно-резонансный.

    В этом случае происходит обмен электронами триплетных уровней. Для осуществления такого обмена необходимо частичное перекрывание электронных облаков донора и акцептора.

    3.    Экситонный механизм.

    Этот механизм имеет место при больших энергиях взаимодействия. При этом возбуждение передаётся с донора на акцептор раньше релаксации самого донора. При этом может произойти передача сразу на несколько молекул-доноров. Эта область передачи возбуждения называется экситон.

    Перенос электрона между взаимодействующими группами происходит по туннельному механизму и сопряжён с изменением конформации молекул.


    64.    Фотобиологические процессы. Их значение для живой материи. Классификация фотобиологических процессов. Общие закономерности фотобиологических процессов.

    Свет выполняет две важных функции в живых системах: Энергетическую – обеспечение живых систем энергией от Солнца, и информационную – обеспечение взаимодействия живых систем с окружающей средой.

    По характеру использования энергии света все процессы делятся на эндэргонические – при которых энергия света превращается в энергию химических связей с высоким запасом свободной энергии, и экзэргонические – при которых большая часть энергии рассеивается в тепло, а часть энергии используется для преодоления активационного барьера.

    По значению процессы делятся на: физиологические – аккумуляция энергии, реакции синтеза, активного транспорта, фотоинформационные и фоторегуляционные процессы; деструктивно-модификационные – повреждение и модификация молекул биологического объекта.

    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.