МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Биофизика. (шпаргалка к экзамену)

    В условиях сопряжения, диссипативная функция отдельных потоков может быть отрицательной, но при этом, диссипативная функция всей системы будет больше нуля. Если один поток отрицателен, то диссипативная функция сопряжённых потоков должна выполнять условие:

    Таким образом, сопряжение процессов позволяет прохождению в системе процессов, невозможных в замкнутой системе.

    Наиболее типичными сопряжениями процессов в БС являются процессы сопряжения гидролиза АТФ с эндэргоническими процессами, что позволяет этим процессам протекать. Без сопряжения эти процессы были бы невозможны.


    19.    Скорость продуцирования энтропии вблизи стационарного состояния системы. Теорема Пригожина.

    При неизменных внешних условиях в СС, близком к ТД равновесию, скорость прироста энтропии за счёт внутренних необратимых процессов достигает отличного от нуля минимального положительного значения.

    т. Пригожина

    Пусть в системе имеется два потока: J1≠0 и J2=0, тогда диссипативная функция:

    Будем считать фиксированной силу X1=const.

    Если система близка к состоянию ТД равновесия, выполняется соотношение Онзагера L12=L21 и

    В стационарном состоянии, близком к равновесию, продукция энтропии минимальна. Теорема Пригожина представляет собой критерий эволюции системы к стационарному состоянию и показывает, что вблизи ТД равновесия невозможны колебательные процессы.


    20.    Общие свойства систем вдали от термодинамического равновесия.

    1.    Интенсивные переменные в разных точках системы резко отличаются, поэтому движущие силы и скорости процессов достаточно велики.

    2.    Скорости процессов не являются линейными функциями движущих сил, соотношение Онзагера не выполняется.

    3.    Скорость продуцирования энтропии не пропорциональна произведению скоростей процессов на движущие силы. По изменениям диссипативной функции нельзя однозначно судить о приближении системы к СС. Теорема Пригожина не выполняется.

    4.    Вдали от ТД равновесия возможны неустойчивые СС.

    5.    Большую роль в работе системы играют флуктуации.

    6.    Эволюция системы может приводить к возникновению упорядоченных структур. Диссипативные структуры.

    Флуктуации – это случайные отклонения переменных от их стационарных значений.

    Если СС устойчиво, то Ф. не могут вывести систему из этого СС. Если СС неустойчиво, то Ф. приводят к значительным отклонениям системы от СС до перехода этой системы в новое СС. Ф. играют большую роль во временной эволюции системы, особенно вблизи точек бифуркации.


    21.    Диссипативные структуры: их классификация. Условия возникновения диссипативных структур. Характеристика отдельных видов диссипативных структур.

    ·        Химические ДС. Возникают в химических неравновесных системах.

    Реакции Белоусова-Жоботинского. Характерна временная упорядоченность, возникновение автоколебательных процессов. Это связано с наличием большого числа взаимодействующих веществ, автокаталитических стадий и обратных связей. В случае достаточного объёма системы и при наличии диффузионных процессов образуется пространственная упорядоченность, структуры Тьюринга.

    ·        Физические ДС.

    Неустойчивость Бенара. Образовании гексагональных ячеек в жидкости высокой плотности при наличии градиента температуры и конвекционных потоков. Также к физическим ДС относятся гидродинамические турбулентности, которые также являются неравновесными системами.

    ·        Биологические ДС.

    Все биологические системы являются резко неравновесными и упорядоченными в пространстве и времени. В биологических системах наиболее часто встречаются диссипативные структуры.

    Образование пространственных структур в жизненном цикле слизевика: На начальной стадии, при достатке пищи, существуют отдельные миксамёбы. При недостатке питательных веществ отдельные миксамёбы начинают выделять в среду цАМФ, который распространяется в среде посредством диффузии. цАМФ воспринимается другими миксамёбами, и оказывает на них двойной эффект: он вызывает вторичное выделение этими миксамёбами цАМФ, что приводит к усилению сигнала, а также вызывает движение миксамёб по градиенту концентрации в направлении к источнику первичного сигнала. При этом формируется пространственно упорядоченная диссипативная структура – плазмодий.

    Чтобы общее изменение энтропии было отрицательным, изменение энтропии за счёт обмена с внешней средой должно быть по модулю больше, чем изменение за счёт внутренних необратимых процессов, и отрицательно. Должен происходить экспорт энтропии во внешнюю среду и поступление свободной энергии в систему.

    Экспорт энтропии, превышающий её производство в системе происходит с участием энтропийных насосов. По характеру энтропийных насосов самоорганизующиеся системы делятся на:

    ·        Пассивные. Когда энтропийный насос находится в окружающей среде и закачивает свободную энергию в систему. Пример: Ячейки Бернара.

    ·        Активные. Энтропийный насос является частью самой системы. Такая система способна активно, самостоятельно поглощать свободную энергию из окружающей среды. К активным относятся все живые системы.


    22.    Информация в биологии.

    Информация – это величина, понижающая энтропию системы, приводящая к её упорядоченности.

    1.    Получение системой И. приводит к снятию неопределённости и возрастанию порядка в системе.

    2.    Приём и передача И. связаны с необратимым производством энтропии в системе.

    3.    В состоянии ТД равновесия И. системы равна нулю, а энтропия максимальна.

    4.    Источником и приёмником И. могут быть только высокоупорядоченные открытые системs/ Такими системами являются, например, все живые системы.

    5.    И. существует в сигнально-кодовой форме.

    6.    И. инвариантна относительно формы её представления.

    7.    Для оперирования И. существуют специализированные информационные структуры: генетическая, гуморальная, нервная и многочисленные экстрасоматические системы.

    Для того чтобы система могла использовать информацию должны выполняться некоторые условия:

    1.    Система должна быть мультистационарной.

    2.    Система должна быть устойчивой. Переключение триггерной системы должно происходить только под действием внешних сил. Это обеспечивает существование феномена памяти. Обусловленные флуктуациями переходы должны происходить крайне редко.

    3.    В фазовом пространстве системы должна существовать область, из которой доступны все аттракторы данной системы. Направление перехода должно зависеть только от типа внешнего воздействия.

    23.    Феномен белка в биофизике. Уникальность строения и свойств белка.

    Белки являются биополимерами, состоящими из аминокислотных остатков, соединённых пептидными связями. Они часто имеют нерегулярное строение и сложную пространственную структуру.

    Белки способны к взаимному превращению практически любых форм энергии и к использованию энергии для совершения работы. Белки таким образом определяют функциональную активность живых систем.

    Белки крайне вариабельны и уникальны. Белки многообразны по своей структуре и выполняемым функциям. В то же время белки, выполняющие одинаковую функцию могут иметь различную структуру, и наоборот.

    Белки выполняют свои функции в физиологических, мягких условиях. При их функционировании редко образуются побочные продукты.

    Белки образуют сложную пространственную структуру. Она образуется в результате самоорганизации на основе первичной структуры и полностью определяется ею.

    Пространственная организация имеет принципиальное значение для реализации свойств белка.

    24.    Элементарные взаимодействия в белках. Их виды. Ковалентные, координационные связи и силы Ван-дер-Ваальса. Их характеристика.

    Элементарные взаимодействия в белках делятся на: Ковалентные связи, Координационные связи, Силы Ван-дер-Ваальса, Водородные связи и Гидрофобные взаимодействия.

    1.    Ковалентные связи.

    В белках наибольшую роль играют пептидные связи – между соседними АК, и дисульфидные связи – между удалёнными серосодержащими АК одной или разных цепей. Цистеин.

    2.    Координационные связи.

    Образуются между атомами O, N или S с 2х или 3х валентными ионами металлов, обычно входящих в активный центр белка. При этом образуется хелатное соединение металла с несколькими атомами белка.

    3.    Взаимодействия Ван-дер-Ваальса.

    Возникают при сближении атомов с полностью заполненными орбиталями.  Эти взаимодействия имеют квантовую природу и обусловлены синхронизацией колебаний электронов взаимодействующих атомов.

    Взаимодействие проявляется притягиванием на больших расстояниях и отталкиванием на малых расстояниях, при этом атомы располагаются на стабильном расстоянии друг от друга и не могут приближаться друг к другу ближе, чем на 3Ǻ.

    Силы Ван-дер-Ваальса также обеспечивают запрет цис-конформации пептидной связи и устойчивость транс-конформации.

    25.    Элементарные взаимодействия в белках. Водородные связи и гидрофобные взаимодействия. Их характеристика.

    Элементарные взаимодействия в белках делятся на: Ковалентные связи, Координационные связи, Силы Ван-дер-Ваальса, Водородные связи и Гидрофобные взаимодействия.

    1.    Водородные связи.

    Образуются между атомом водорода, ковалентно связанным с электроотрицательным атомом и другим электроотрицательным атомом. Водородная связь имеет электростатическую природу и связана с наличием парциальных зарядов на взаимодействующих атомах. Водородная связь направлена от донора(водород) к акцептору(атому O или N). Водород всегда выступает донором одной водородной связи, кислород может быть акцептором двух водородных связей.

    В белках водородные связи образуются между отдельными группами аминокислотных остатков и между полярными АК и молекулами воды.

    2.    Гидрофобные взаимодействия.

    Возникают между гидрофобными участками АК цепи. Неполярный участок препятствует образованию водородных связей между молекулами воды. Это приводит к уменьшению энтропии в системе и увеличению свободной энергии, так как происходит уменьшение числа степеней свободы у молекул воды, находящихся в контакте с неполярным участком. Далее происходит самопроизвольный процесс сближения гидрофобных участков для уменьшения поверхности их соприкосновения с молекулами воды. Таким образом, гидрофобные взаимодействия обусловлены эволюцией белка к стационарному состоянию с минимальной площадью контакта гидрофобной части с молекулами воды. В белках наиболее гидрофобные остатки образуют "гидрофобное ядро", окружённое гидрофильными остатками.


    26.    Первичная структура белка. Пептидная связь и её свойства. Пространственная конфигурация полипептидной цепи. Факторы её определяющие. Карты Рамачандрана.

    Первичная структура полипептидной цепи представлена последовательностью АК остатков, соединённых пептидными связями. Возможные конфигурации пептидной цепи прежде всего обусловлены плоским строением пептидной связи.

    1.    Валентные углы. Порядка 109°.

    2.    Двугранные углы поворота вокруг валентной связи

    ·        ω – Угол внутри пептидной связи, наиболее стабилен и составляет около 179°.

    ·        φ и ψ углы – Между Cα атомом и C или N пептидной связи.

    ·        χ – Между Сα атомом и атомом боковой цепи.

    В то время как валентные углы и ω угол достаточно постоянны, углы φ и ψ сильно отличаются и зависят от АК остатков, связанных пептидной связью, а также от прочих условий.

    Для определения наиболее устойчивых значений этих углов и запрещённых конформаций были получены стерические карты Рамачандрана для разных АК. Расчёт карт Рамачандрана проводился из предположения об атомах, как твёрдых сферах с Ван-дер-ваальсовыми радиусами. Область разрешённых значений углов зависит в большой степени от размера радикала и от соседних АК, также свои ограничения накладывают и другие типы взаимодействий в белке.


    27.    Вторичная структура белка. Типы вторичной структуры, их особенности. Образование вторичной структуры белка.

    1.    α-структура.

    Стабилизирована водородными связями между H пептидной группы и карбонильным O отстоящим на 4 АК остатка. В образовании спирали участвуют все пептидные группы. Так как задействуются все водородные связи, спираль приобретает гидрофобные свойства. Вся спираль представляет собой диполь, "+" на N-конце и "–" на C-конце. α-спираль является самой устойчивой вторичной структурой и самой часто встречающейся. Некоторые АК могут нарушать структуру спирали, препятствуя её сворачиванию, это АК с крупными радикалами: пролин, гистидин, триптофан.

    2.    β-структура.

    В β-структуре водородные связи образуются между параллельно уложенными цепями, при этом образуются слои или листы. Бывают параллельные, антипараллельные и смешанные β-слои. При этом β-слои всегда имеют некоторую скрученность и также являются гидрофобными структурами за счёт полностью задействованных водородных связей.

    3.    Спирали без водородных связей.

    Такие спирали образуются только за счёт сил Ван-дер-Ваальса. Например, полипролиновая спираль в молекуле коллагена.

    4.    Нерегулярная структура.

    Часто встречается нерегулярная пространственная структура с чередованием регулярных и нерегулярных участков. Такая структура характерна для большинства функциональных белков.

    Образование α-спирали происходит как нефазовый переход, так как оба фазовых состояния одномерны и не происходит изменения границы фаз.

    Образование β-листов происходит как ФП 1 рода, площадь контакта цепи с листом зависит от размера контактирующих элементов. Процесс образования β-структуры происходит значительно дольше.


    28.   Третичная структура белка. Классификация белков по типу третичной структуры.

    Третичная структура белков стабилизируется гидрофобными взаимодействиями, водородными и дисульфидными связями.

    Различают третичную структуру у фибриллярных, глобулярных и мембранных белков.

    Наиболее простая третичная структура характерна для фибриллярных белков. Для них характерна высокая регулярность первичной и вторичной структуры и большие размеры полипептидной цепи.

    ·        α-структурные. Например, коллаген.

    Первичная структура представлена полимером трипептида (-гли-про-про-), закрученного во вторичную структуру α-спираль. Третичная структура представлена суперспиралью из трёх полипептидных цепей.

    ·        β-структурные. Например, фиброин шёлка.

    Фиброин образован чередующимися АК глицина и аланина, уложенными в β-слои по 8 блоков. Эти структуры затем накладываются друг на друга, образуя более сложную структуру.

    ·        Существуют также глобулярные белки, образующие фибриллярную третичную структуру. К таким белкам относится актин.

    Глобулярные белки имеют наиболее сложную пространственную структуру. В центральной части глобулы обычно располагается гидрофобное ядро, образованное α и β-структурами и гидрофобными АК. На периферии располагаются нерегулярные петли, гидрофильные участки, образующие водородные связи с молекулами воды. В глобулярных белках часто выделяют промежуточную доменную структуру, образованную стабильными сочетаниями блоков вторичной структуры. По преобладающим типам структуры выделяют: α-глобулы, β-глобулы и смешанные белки.

    К отдельному типу относят мембранные белки. Их особенностью является наличие трансмембранного участка, образованного гидрофобными структурами и обращённого к липидам мембраны. Для трансмембранного участка обычно характерна высокая регулярность укладки и простота третичной структуры. Гидрофильные участки располагающиеся на поверхности мембраны имеют нерегулярную структуру.


    29.    Физическая теория фазовых переходов. Понятие фазового перехода. Типы фазовых переходов. Образование и разрушение пространственной структуры белка с позиции теории фазовых переходов.

    Фаза вещества – это состояние вещества, которому в данных условиях соответствует минимум свободной энергии. При изменении условий могут происходить переходы между фазами, изменение фазового состояния вещества. По характеру изменения свободной энергии выделяют три типа фазовых переходов.

    ФП 1 рода.

    В процессе ФП наблюдается только начальное и конечное состояния, невозможно уловить промежуточные состояния. ФП происходит в узком диапазоне условий, зависимость свободной энергии от условий носит S-образный характер. Изменение фазы происходит по принципу "Всё или Ничего". Стабильные состояния между ФП 1 рода разделены достаточно высоким энергетическим барьером, поэтому они происходят достаточно длительное время.

    ФП 2 рода.

    Для этого типа ФП характерно постепенное изменение фазы через многочисленные промежуточные состояния, принцип "Всё или Ничего" отсутствует. Скачок энергии в малом диапазоне условий отсутствует, поэтому ФП 2 рода происходят быстро и в более широком диапазоне условий. При достижении температуры ФП происходит скачок теплоёмкости системы, в результате дальнейший рост температуры сопровождается слабым ростом энергии.

    Нефазовые переходы.

    Для них характерно значительное изменение упорядоченности системы без изменения её агрегатного состояния и размерности.

    В процессах денатурации и ренатурации белка разные стадии представляют собой фазовые переходы разного рода. Для малых белков процесс можно считать одностадийным. Этот процесс происходит как ФП 1 рода.

    Для крупных белков этот процесс многостадийный, и разные его стадии происходят как ФП разного рода.

    Ранние этапы самосборки различаются в зависимости от типа вторичной структуры.

    Образование α-спирали происходит как нефазовый переход, так как оба фазовых состояния одномерны и не происходит изменения границы фаз.

    Образование β-листов происходит как ФП 1 рода, площадь контакта цепи с листом зависит от размера контактирующих элементов. Процесс образования β-структуры происходит значительно дольше.

    Процесс образования и разрушения нативной структуры происходит как ФП 1 рода. В процессе этого перехода происходит изменение энтропии системы, компенсированное изменением свободной энергии. Это обеспечивается наличием большого числа слабых связей с низкой энергией.

    К ФП 2 рода могут относиться процессы образования и разрушения доменных структур, которые часто сопровождаются ростом теплоёмкости системы.

    Страницы: 1, 2, 3, 4, 5, 6


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.