МЕНЮ


Фестивали и конкурсы
Семинары
Издания
О МОДНТ
Приглашения
Поздравляем

НАУЧНЫЕ РАБОТЫ


  • Инновационный менеджмент
  • Инвестиции
  • ИГП
  • Земельное право
  • Журналистика
  • Жилищное право
  • Радиоэлектроника
  • Психология
  • Программирование и комп-ры
  • Предпринимательство
  • Право
  • Политология
  • Полиграфия
  • Педагогика
  • Оккультизм и уфология
  • Начертательная геометрия
  • Бухучет управленчучет
  • Биология
  • Бизнес-план
  • Безопасность жизнедеятельности
  • Банковское дело
  • АХД экпред финансы предприятий
  • Аудит
  • Ветеринария
  • Валютные отношения
  • Бухгалтерский учет и аудит
  • Ботаника и сельское хозяйство
  • Биржевое дело
  • Банковское дело
  • Астрономия
  • Архитектура
  • Арбитражный процесс
  • Безопасность жизнедеятельности
  • Административное право
  • Авиация и космонавтика
  • Кулинария
  • Наука и техника
  • Криминология
  • Криминалистика
  • Косметология
  • Коммуникации и связь
  • Кибернетика
  • Исторические личности
  • Информатика
  • Инвестиции
  • по Зоология
  • Журналистика
  • Карта сайта
  • Основы теории систем и системный анализ (лекции)

             · разброс значений по стратегиям на этом фоне, скорее всего свидетельствует о большей зависимости дневной выручки от стратегии, чем от дней недели или категории магазина;

             · заметное отличие средних по 1-й и 3-й стратегиям от средних по 2-й и 4-й, может быть основой для принятия решения — искать наилучшую стратегию, выбирая между 1-й и 3-й.

             В этом — прямой практический результат использования рандомизированного плана, построения латинского квадрата.

             Но это далеко не все. Теория планирования эксперимента дает, кроме способов построения планов с учетом возможных влияний на интересующую нас величину других факторов, еще и особые методы обработки полученных экспериментальных данных.

             Самая суть этих методов может быть представлена так.

             Пусть Wis  есть выручка в i-м магазине при применении к нему s-й стратегии управления. Предполагается рассматривать эту выручку в виде суммы составляющих

             Wis = W0 + Ds ei;                                                                       {3-25}

    где:

             · W0  определяет среднюю выручку для всех  магазинов при условии применения к каждому из них всех стратегий по очереди с соблюдением постоянными всех других условий, влияющих на выручку;

             · W0 + Ds есть средняя выручка при применении ко всем магазинам s-й стратегии;

             ·  ei    рассматривается как "ошибка измерения" — случайная величина с нулевым математическим ожиданием и нормальным законом распределения.

             Несмотря на явную нереальность соблюдения постоянными внешних влияющих факторов, мы можем получить  оценку каждого из слагаемых Wis и искать оптимальную стратегию через прибавку от ее применения Ds  с учетом ошибки наблюдения. Можно считать доказанной  "нормальность" распределения величины ei и использовать "правило трех сигм" при принятии решений по итогам эксперимента.


    3.12   Методы анализа больших систем,  факторный анализ       


             Данный параграф является заключительным и более не будет возможности осветить еще одну особенность методов системного анализа, показать вам еще один путь к достижению профессионального уровня в области управления экономическими системами.

             Уже ясно, что ТССА большей частью основывает свои практические методы на платформе математической статистики. Несколько упреждая ваш рабочий учебный план (курс математической статистики — предмет нашего сотрудничества в следующем семестре), обратимся к современным постулатам этой науки.

             Общепризнанно, что в наши дни можно выделить три подхода к решению задач, в которых используются статистические данные.

             · Алгоритмический подход, при котором мы имеем статистические данные о некотором процессе и по причине слабой изученности процесса его основная характеристика (например, эффективность экономической системы) мы вынуждены сами строить “разумные” правила обработки данных, базируясь на своих собственных представлениях об интересующем нас показателе.

             · Аппроксимационный подход, когда у нас есть полное представление о связи данного показателя с имеющимися у нас данными, но неясна природа возникающих ошибок — отклонений от этих представлений.

             · Теоретико-вероятностный подход, когда требуется глубокое проникновение в суть процесса для выяснения связи показателя со статистическими данными.

             В настоящее время все эти подходы достаточно строго обоснованы научно и “снабжены” апробированными методами практических действий.

             Но существуют ситуации, когда нас интересует не один, а несколько показателей процесса и, кроме того, мы подозреваем наличие нескольких, влияющих на процесс, воздействийфакторов, которые являются не наблюдаемыми, скрытыми или латентными.

             Наиболее интересным  и полезным в плане понимания сущности факторного анализа — метода решения задач в этих ситуациях, является пример использования наблюдений при эксперименте, который ведет природа, Ни о каком планировании здесь не может идти речи — нам приходится довольствоваться пассивным экспериментом.

             Удивительно, но и в этих “тяжелых”  условиях ТССА предлагает методы выявления таких факторов, отсеивания слабо проявляющих себя, оценки значимости полученных зависимостей показателей работы системы от этих факторов.

             Пусть мы провели по n наблюдений за каждым из k измеряемых показателей эффективности некоторой экономической системы и данные этих наблюдений представили в виде матрицы (таблицы).     



                            Матрица исходных данных   E[n·k]                  {3-26}

    E 11

    E12

    E1i

    E1k

    E 21

    E22

    E2i

    E2k

    E j1

    Ej2

    Eji

    Ejk

    E n1

    En2

    Eni

    Enk


             Пусть мы предполагаем, что на эффективность системы влияют и другие — ненаблюдаемые, но легко интерпретируемые (объяснимые по смыслу, причине и механизму влияния) величины — факторы.   

             Сразу же сообразим, что чем больше n и чем меньше таких число факторов m (а может их и нет вообще!), тем больше надежда оценить их влияние на интересующий нас показатель E.

             Столь же легко понять необходимость условия   m < k, объяснимого на простом примере аналогии — если мы исследуем некоторые предметы с использованием всех 5 человеческих чувств, то наивно надеяться на обнаружение более пяти “новых”, легко объяснимых, но неизмеряемых признаков у таких предметов, даже если мы “испытаем” очень большое их количество.

             Вернемся к исходной матрице наблюдений E[n·k] и отметим, что перед нами, по сути дела, совокупности  по n наблюдений над  каждой из k  случайными величинами  E1, E2, … E k.  Именно эти величины “подозреваются” в связях друг с другом — или во взаимной коррелированности.

             Из рассмотренного ранее метода оценок таких связей следует, что мерой разброса  случайной величины E i  служит ее дисперсия, определяемая суммой квадратов всех зарегистрированных значений этой величины S(Eij)2 и ее средним значением (суммирование ведется по столбцу).

             Если мы применим замену переменных в исходной матрице наблюдений, т.е. вместо Ei j  будем использовать случайные величины


              Xij = ,                                                                         {3-27}


    то мы  преобразуем исходную матрицу в новую


             X[n·k]                                                                                           {3-28}

    X 11

    X12

    X1i

    X1k

    X 21

    X22

    X2i

    X2k

    X j1

    Xj2

    Xji

    Xjk

    X n1

    Xn2

    Xni

    Xnk



             Отметим, что все элементы новой матрицы X[n·k] окажутся безразмерными, нормированными величинами и, если некоторое значение Xij составит, к примеру, +2, то это будет означать только одно - в строке j наблюдается отклонение от среднего  по столбцу  i  на два среднеквадратичных отклонения (в большую сторону).

             Выполним теперь следующие операции.

             · Просуммируем квадраты всех значений столбца 1 и разделим результат на (n - 1) —   мы получим  дисперсию (меру разброса) случайной величины X1 , т.е. D1. Повторяя эту операцию, мы найдем таким же образом дисперсии всех наблюдаемых (но уже нормированных) величин.

             · Просуммируем произведения соответствующих строк (от j =1 до j = n) для столбцов 1,2  и  также разделим на (n -1). То, что мы теперь получим, называется  ковариацией C12 случайных величин X1 ,  X2  и служит мерой их статистической связи.

             · Если мы повторим предыдущую процедуру для всех пар столбцов, то в результате получим еще одну, квадратную  матрицу C[k·k],  которую принято называть ковариационной.

             Эта  матрица имеет на главной диагонали дисперсии случайных величин Xi, а в качестве остальных элементов — ковариации этих величин  ( i =1…k).

    Ковариационная матрица C[k·k]                                               {3-29}

    D1

    C12

    C13

    C1k

    C21

    D2

    C23

    C2k

    Cj1

    Cj2

    Cji

    Cjk

    Cn1

    Cn2

    Cni

    Dk


    Если вспомнить, что связи случайных величин можно описывать не только ковариациями, но и коэффициентами корреляции, то в соответствие матрице {3-29} можно поставить матрицу парных коэффициентов корреляции или  корреляционную матрицу


    R [k·k]                                                                                             {3-30}


    1

    R12

    R13

    R1k

    R21

    1

    R23

    R2k

    Rj1

    Rj2

    Rji

    Rjk

    Rn1

    Rn2

    Rni

    1

    в  которой  на диагонали находятся 1, а внедиагональные элементы являются обычными коэффициентами парной корреляции.

    Так вот, пусть мы полагали наблюдаемые переменные Ei независящими друг от друга, т.е. ожидали увидеть матрицу R[k·k] диагональной, с единицами в главной диагонали и нулями в остальных местах. Если теперь это не так, то наши догадки о наличии латентных факторов в какой-то мере получили подтверждение.

    Но как убедиться в своей правоте, оценить достоверность нашей гипотезы — о наличии хотя бы одного латентного фактора,  как оценить степень его влияния на основные (наблюдаемые) переменные?  А если, тем более, таких факторов несколько — то как их проранжировать по степени влияния?

    Ответы на такие практические вопросы призван давать факторный анализ. В его основе лежит все тот же “вездесущий” метод статистического моделирования (по образному выражению В.В.Налимова — модель вместо теории).

    Дальнейший ход анализа при  выяснению таких вопросов зависит от того, какой из матриц мы будем пользоваться. Если матрицей ковариаций C[k·k], то мы имеем дело с методом главных компонент, если же мы пользуемся  только матрицей  R[k·k], то мы используем метод факторного анализа в его “чистом” виде.

    Остается разобраться в главном — что позволяют оба эти метода, в чем их различие и как ими пользоваться. Назначение обоих методов одно и то же — установить сам факт наличия латентных переменных  (факторов), и если они обнаружены, то получить количественное описание их влияния на основные переменные Ei.

    Ход рассуждений при выполнении поиска главных компонент заключается в следующем. Мы предполагаем наличие некоррели-рованных переменных  Zj ( j=1…k), каждая из которых представляется нам комбинацией основных переменных (суммирование по i =1…k):

    Zj = S Aj i ·X i                                                                                                                       {3-31}

    и, кроме того, обладает дисперсией, такой что

     D(Z1) ³ D(Z2) ³³ D(Zk).

    Поиск коэффициентов Aj i (их называют весом  j-й компонеты в содержании i-й переменной) сводится к решению матричных уравнений и не представляет особой сложности при использовании компьютерных программ. Но суть метода весьма интересна и на ней стоит задержаться.

    Как известно из векторной алгебры, диагональная матрица [2·2] может рассматриваться как описание 2-х точек (точнее — вектора) в двумерном пространстве, а такая же матрица размером [k·k]—  как описание k точек  k-мерного пространства.

    Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


    Приглашения

    09.12.2013 - 16.12.2013

    Международный конкурс хореографического искусства в рамках Международного фестиваля искусств «РОЖДЕСТВЕНСКАЯ АНДОРРА»

    09.12.2013 - 16.12.2013

    Международный конкурс хорового искусства в АНДОРРЕ «РОЖДЕСТВЕНСКАЯ АНДОРРА»




    Copyright © 2012 г.
    При использовании материалов - ссылка на сайт обязательна.